To see the other types of publications on this topic, follow the link: DISPERSION FLATTENED.

Journal articles on the topic 'DISPERSION FLATTENED'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'DISPERSION FLATTENED.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

NAKAJIMA, Kazuhide, and Takashi MATSUI. "Dispersion-Flattened Photonic Crystal Fiber." Review of Laser Engineering 34, no. 1 (2006): 17–21. http://dx.doi.org/10.2184/lsj.34.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Al-Qdah, M. T. "Employing dispersion-flattened fiber for chromatic dispersion measurement." Optical Engineering 45, no. 5 (May 1, 2006): 055005. http://dx.doi.org/10.1117/1.2205828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heusinger, Martin, Thomas Flügel-Paul, Kevin Grabowski, Dirk Michaelis, Stefan Risse, and Uwe D. Zeitner. "High-dispersion TIR-GRISMs with flattened angular dispersion profile." Optica 9, no. 4 (April 11, 2022): 412. http://dx.doi.org/10.1364/optica.427652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guo, Yuhao, Zeinab Jafari, Anu M. Agarwal, Lionel C. Kimerling, Guifang Li, Jurgen Michel, and Lin Zhang. "Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths." Optics Letters 41, no. 21 (October 24, 2016): 4939. http://dx.doi.org/10.1364/ol.41.004939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abdur Razzak, S. M., Y. Namihira, and F. Begum. "Ultra-flattened dispersion photonic crystal fibre." Electronics Letters 43, no. 11 (2007): 615. http://dx.doi.org/10.1049/el:20070558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Survaiya, S. P., and R. K. Shevgaonkar. "Design of subpicosecond dispersion-flattened fibers." IEEE Photonics Technology Letters 8, no. 6 (June 1996): 803–5. http://dx.doi.org/10.1109/68.502100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Lin, Yang Yue, Raymond G. Beausoleil, and Alan E. Willner. "Flattened dispersion in silicon slot waveguides." Optics Express 18, no. 19 (September 10, 2010): 20529. http://dx.doi.org/10.1364/oe.18.020529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yu, M., C. J. McKinstrie, and Govind P. Agrawal. "Modulational instabilities in dispersion-flattened fibers." Physical Review E 52, no. 1 (July 1, 1995): 1072–80. http://dx.doi.org/10.1103/physreve.52.1072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Safaai-Jazi, A., and H. T. Hattori. "Large-effective-area dispersion-flattened fiber." Microwave and Optical Technology Letters 16, no. 6 (December 20, 1997): 327–28. http://dx.doi.org/10.1002/(sici)1098-2760(19971220)16:6<327::aid-mop1>3.0.co;2-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Islam, Raonaqul, Shubi Felix Kaijage, and Sohel Rana. "Low-loss and dispersion flattened terahertz fiber." Optik 229 (March 2021): 166293. http://dx.doi.org/10.1016/j.ijleo.2021.166293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dai Nengli, 戴能利, 李洋 Li Yang, 彭景刚 Peng Jinggang, and 李进延 Li Jinyan. "Development of Dispersion-Flattened Photonic Crystal Fibers." Laser & Optoelectronics Progress 48, no. 1 (2011): 010602. http://dx.doi.org/10.3788/lop48.010602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sanders, Jason L., and N. Wyn Evans. "MASS ESTIMATORS FOR FLATTENED DISPERSION-SUPPORTED GALAXIES." Astrophysical Journal 830, no. 2 (October 12, 2016): L26. http://dx.doi.org/10.3847/2041-8205/830/2/l26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Islam, Naeemul, Anik Baul, Mohamed Fauzi Packeer Mohamed, Abu Bakkar Sakib, and Md Fokhrul Hasan. "Nearly Zero Ultra-Flattened Dispersion in Octagonal Photonic Crystal Fiber." Key Engineering Materials 946 (May 25, 2023): 67–72. http://dx.doi.org/10.4028/p-t45seq.

Full text
Abstract:
The low confinement losses, relatively high nonlinearity, and wideband ultra-flattened chromatic dispersion are the crucial properties of the PCFs. Thus, in this research, a comprehensive study has been conducted to design a novel Octagonal PCF (Photonic Crystal Fiber) microstructure with an ultra-flattened dispersion profile through a vast range of optical communication band wavelengths with a large negative dispersion of nearly 0.6635 ps/nm/km at 1550 nm. This PCF design and simulative study have been made by using COMSOL multi-physics. The guiding features of the fiber have been analyzed numerically to solve the Maxwell equation of electromagnetic field by using the full vector finite element method with cylindrically perfect to match layer for strongly absorb the outgoing waves from the computational region. Moreover, Octagonal rings in the cladding region provide better confinement and flattened dispersion in O-band (1260 nm-1360 nm) and C-band (1530 nm-1565 nm) in comparison to honeycomb or hexagonal lattice structures. Our proposed model has a nearly zero ultra-flattened dispersion of ± 0.3028 ps/nm/km in a 1290 nm to 1620 nm with wavelength range (320 nm flat band) and low confinement loss is less than 10-7 dB/km in the entire band of interest. Furthermore, this research has been presented a 7.2 μm2 effective area which is smaller than other reported fibers at 1550 nm wavelength.
APA, Harvard, Vancouver, ISO, and other styles
14

Ren Weihong, 任卫红, 赵楚军 Zhao Chujun, and 文双春 Wen Shuangchun. "Dispersion Characteristics of Flattened Mode Micro/Nano Fibers." Laser & Optoelectronics Progress 47, no. 6 (2010): 060601. http://dx.doi.org/10.3788/lop47.060601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Myslivets, Evgeny, and Stojan Radic. "Spatially-Resolved Characterization of Dispersion Flattened Nonlinear Fiber." IEEE Photonics Technology Letters 25, no. 5 (March 2013): 434–37. http://dx.doi.org/10.1109/lpt.2013.2240448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hansen, K. "Dispersion flattened hybrid-core nonlinear photonic crystal fiber." Optics Express 11, no. 13 (June 30, 2003): 1503. http://dx.doi.org/10.1364/oe.11.001503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gong, Tianxun, Feng Luan, Dora Juanjuan Hu, and Ping Shum. "Photonic crystal fibers with high and flattened dispersion." Optics Communications 284, no. 18 (August 2011): 4176–79. http://dx.doi.org/10.1016/j.optcom.2011.04.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

DAI, DAOXIN, and SAILING HE. "A Flattened AWG Demultiplexer with Low Chromatic Dispersion." Fiber & Integrated Optics 22, no. 3 (January 1, 2003): 141–49. http://dx.doi.org/10.1080/01468030303822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

DAI, DAOXIN, and SAILING HE. "A Flattened AWG Demultiplexer with Low Chromatic Dispersion." Fiber and Integrated Optics 22, no. 3 (January 2003): 141–49. http://dx.doi.org/10.1080/01468030390111995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Xi Liu, Xi Liu, Lihong Han Lihong Han, Xiaoyu Jia Xiaoyu Jia, Jinlong Wang Jinlong Wang, Fangyong Yu Fangyong Yu, and Zhongyuan Yu Zhongyuan Yu. "Design of hybrid-core PCF with nearly-zero flattened dispersion and high nonlinearity." Chinese Optics Letters 13, no. 1 (2015): 010602–10606. http://dx.doi.org/10.3788/col201513.010602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

YANG Pei-long, 杨佩龙, 戴世勋 DAI Shi-xun, 罗宝华 LUO Bao-hua, and 王军利 WANG Jun-li. "Design of Dispersion Flattened and Dispersion Decreasing Fiber in Mid-infrared Region." ACTA PHOTONICA SINICA 45, no. 9 (2016): 919002. http://dx.doi.org/10.3788/gzxb20164509.0919002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Saitoh, Kunimasa, M. Koshiba, T. Hasegawa, and E. Sasaoka. "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion." Optics Express 11, no. 8 (April 21, 2003): 843. http://dx.doi.org/10.1364/oe.11.000843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Xu, Lijuan, Minghui Yang, Yuhao Guo, Henan Liu, Guifang Li, and Lin Zhang. "Ultrafast Pulse Manipulation in Dispersion-Flattened Waveguides With Four Zero-Dispersion Wavelengths." Journal of Lightwave Technology 37, no. 24 (December 15, 2019): 6174–82. http://dx.doi.org/10.1109/jlt.2019.2947302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rahman, Mahbubur, A. H. Md Mostazir, M. A. Alam, and Md Samiul Habib. "Design Of Near Zero Ultra-Flattened Chromatic Dispersion Highly Non Linear Holey Fiber In Tele Communication Band." International Journal of Engineering & Technology 2, no. 1 (February 7, 2013): 70. http://dx.doi.org/10.14419/ijet.v2i1.505.

Full text
Abstract:
We propose a four-ring hexagonal holey fiber (HF) which exhibits near zero ultra-flattened chromatic dispersion and nonlinear property simultaneously in a modest number of rings. The finite element method with perfectly matched layers boundary condition is used to investigate the guiding properties. A four ring HF with flattened dispersion of 0.85ps/nm/km from 1.14 to 1.60 m wavelength range, 21.34W-1km-1 nonlinear coefficient and splice loss 3.82 dB at 1.55m is numerically demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
25

Cheng, Chunfu, Yiwen Ou, Jinye Zhang, Qinghua Lv, Jinrong Zhu, and Hui Lv. "Design of all-normal dispersion photonic crystal fiber for high coherent broadband supercontinuum generation in the telecommunication window." Journal of Nonlinear Optical Physics & Materials 24, no. 03 (September 2015): 1550026. http://dx.doi.org/10.1142/s0218863515500265.

Full text
Abstract:
An all-normal dispersion photonic crystal fiber with nearly zero flattened dispersion at 1550 nm is designed for generating high coherent broadband supercontinuum. It is found that an all normal dispersion photonic crystal fiber with nearly zero flattened dispersion at 1550 nm can be obtained by appropriately designing geometrical parameters and optimizing the index of the first ring of air-holes with filling different index liquid of the photonic crystal fiber. The results show that the optimized design photonic crystal fiber for pumping at 1550 nm is suitable for flat broadband and high coherent supercontinuum generation with only 4 kW input peak power in a 40 cm long of the photonic crystal fiber. It is also found the weaker the dispersion effect is, the more advantage to the high coherent broadband supercontinuum generation due to the self-phase modulation.
APA, Harvard, Vancouver, ISO, and other styles
26

Binh, Le N., Thanh L. Huynh, K. Y. Chin, and D. Sharma. "DESIGN OF DISPERSION FLATTENED AND COMPENSATING FIBERS FOR DISPERSION-MANAGED OPTICAL COMMUNICATIONS SYSTEMS." International Journal on Wireless & Optical Communications 02, no. 01 (June 2004): 63–82. http://dx.doi.org/10.1142/s0219799504000210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

XU Yong-zhao, 徐永钊, 刘敏霞 LIU Min-xia, 张. 耿. ZHANG Geng, and 叶. 海. YE Hai. "Nonlinear Chirped-pulse Propagation and Supercontinuum Generation in Dispersion-flattened Dispersion-decreasing Fibers." Chinese Journal of Luminescence 37, no. 4 (2016): 439–45. http://dx.doi.org/10.3788/fgxb20163704.0439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

O, Kang-Hyok, and Kwang-Hyon Kim. "Topological photonic crystal fiber with near-zero flattened dispersion." Optical Fiber Technology 73 (October 2022): 103054. http://dx.doi.org/10.1016/j.yofte.2022.103054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Reeves, William, J. Knight, P. Russell, and P. Roberts. "Demonstration of ultra-flattened dispersion in photonic crystal fibers." Optics Express 10, no. 14 (July 15, 2002): 609. http://dx.doi.org/10.1364/oe.10.000609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gundu, Krishna Mohan, Miroslav Kolesik, Jerome V. Moloney, and Kyung Shik Lee. "Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers." Optics Express 14, no. 15 (2006): 6870. http://dx.doi.org/10.1364/oe.14.006870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fotheringham, U. "Dispersion-flattened single-mode fibres with minimised dopant expenditure." Electronics Letters 24, no. 13 (1988): 801. http://dx.doi.org/10.1049/el:19880545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ferrando, Albert, Enrique Silvestre, Pedro Andres, Juan Miret, and Miguel Andres. "Designing the properties of dispersion-flattened photonic crystal fibers." Optics Express 9, no. 13 (December 17, 2001): 687. http://dx.doi.org/10.1364/oe.9.000687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Chi-Feng. "Slow Group-Velocity Femtosecond Solitons in Dispersion Flattened Fiber." Japanese Journal of Applied Physics 44, no. 11 (November 9, 2005): 7962–65. http://dx.doi.org/10.1143/jjap.44.7962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Liao, Jianfei, Junqiang Sun, Mingdi Du, and Yi Qin. "Highly Nonlinear Dispersion-Flattened Slotted Spiral Photonic Crystal Fibers." IEEE Photonics Technology Letters 26, no. 4 (February 2014): 380–83. http://dx.doi.org/10.1109/lpt.2013.2293661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wang, Jingyuan, Chun Jiang, Weisheng Hu, and Mingyi Gao. "Modified design of photonic crystal fibers with flattened dispersion." Optics & Laser Technology 38, no. 3 (April 2006): 169–72. http://dx.doi.org/10.1016/j.optlastec.2004.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hsu, Jui-Ming. "Tailoring of nearly zero flattened dispersion photonic crystal fibers." Optics Communications 361 (February 2016): 104–9. http://dx.doi.org/10.1016/j.optcom.2015.10.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Liang, A. H., H. Toda, A. Maruta, and A. Hasegawa. "Dynamically gain flattened EDFA with bent dispersion shifted fibre." Electronics Letters 33, no. 25 (1997): 2126. http://dx.doi.org/10.1049/el:19971456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Li, Jiayuan, Ke Xu, and Jiangbing Du. "Ultrabroadband and Flattened Dispersion in Aluminum Nitride Slot Waveguides." IEEE Photonics Journal 9, no. 4 (August 2017): 1–8. http://dx.doi.org/10.1109/jphot.2017.2716956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ferrando, A., E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. St J. Russell. "Designing a photonic crystal fibre with flattened chromatic dispersion." Electronics Letters 35, no. 4 (1999): 325. http://dx.doi.org/10.1049/el:19990189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Das, U. K., I. C. Goyal, and R. Srivastava. "Mode field radius of dispersion flattened single mode fibers." Optics Communications 61, no. 1 (January 1987): 16–20. http://dx.doi.org/10.1016/0030-4018(87)90116-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Xia, Xiaomin Ren, Yongzhao Xu, Zinan Wang, and Yongqing Huang. "Ultraflat supercontinuum generation in a dispersion-flattened microstructure fiber." Microwave and Optical Technology Letters 49, no. 5 (2007): 1062–64. http://dx.doi.org/10.1002/mop.22362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gangopadhyay, S., and S. N. Sarkar. "LP11 Cutoff Frequency Calculation Using Chebyshev Technique in Dispersion — Shifted and Dispersion — Flattened Fibres." Journal of Optics 25, no. 2 (June 1996): 103–8. http://dx.doi.org/10.1007/bf03549308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Faisal, Mohammad, Animesh Bala, Kanan Roy Chowdhury, and Md Borhan Mia. "Highly birefringent large negative dispersion-flattened photonic crystal fibre for broadband residual dispersion compensation." Journal of Modern Optics 65, no. 13 (April 6, 2018): 1577–83. http://dx.doi.org/10.1080/09500340.2018.1455924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Saffai-Jazi, A., and L. J. Lu. "Accuracy of approximate methods for the evaluation of chromatic dispersion in dispersion-flattened fibers." Journal of Lightwave Technology 8, no. 8 (1990): 1145–50. http://dx.doi.org/10.1109/50.57834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Komukai, Tetsuro, and Masataka Nakazawa. "Efficient Fiber Gratings Formed on High NA Dispersion-Shifted Fiber and Dispersion-Flattened Fiber." Japanese Journal of Applied Physics 34, Part 2, No. 10A (October 1, 1995): L1286—L1287. http://dx.doi.org/10.1143/jjap.34.l1286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Singh, Sandhir Kumar, D. K. Singh, and P. Mahto. "Tailoring Of Flattened Dispersion In Triangular-Lattice Photonic Crystal Fiber." International Journal of Distributed and Parallel systems 2, no. 6 (November 30, 2011): 127–34. http://dx.doi.org/10.5121/ijdps.2011.2612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Xu, Qiang. "Highly Nonlinear Dispersion-Flattened Photonic Crystal Fiber with High Birefringence." Journal of Nanoelectronics and Optoelectronics 8, no. 3 (March 1, 2013): 306–10. http://dx.doi.org/10.1166/jno.2013.1460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Liang Fang, 方亮, 赵建林 Jianlin Zhao, and 甘雪涛 Xuetao Gan. "Ultra broadband-flattened dispersion photonic crystal fiber for supercontinuum generation." Chinese Optics Letters 8, no. 11 (2010): 1028–31. http://dx.doi.org/10.3788/col20100811.1028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Razzak, S. M. Abdur, and Yoshinori Namihira. "Proposal for Highly Nonlinear Dispersion-Flattened Octagonal Photonic Crystal Fibers." IEEE Photonics Technology Letters 20, no. 4 (February 2008): 249–51. http://dx.doi.org/10.1109/lpt.2007.912986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xu, Huizhen, Jian Wu, Kun Xu, Yitang Dai, Cong Xu, and Jintong Lin. "Ultra-flattened chromatic dispersion control for circular photonic crystal fibers." Journal of Optics 13, no. 5 (March 31, 2011): 055405. http://dx.doi.org/10.1088/2040-8978/13/5/055405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography