Academic literature on the topic 'Disease progression modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Disease progression modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Disease progression modeling"
Reeve, Russell, Lei Pang, Bradley Ferguson, Michael O’Kelly, Seth Berry, and Wei Xiao. "Rheumatoid Arthritis Disease Progression Modeling." Therapeutic Innovation & Regulatory Science 47, no. 6 (November 2013): 641–50. http://dx.doi.org/10.1177/2168479013499571.
Full textInoue, Lurdes Y. T., Ruth Etzioni, Christopher Morrell, and Peter Müller. "Modeling Disease Progression With Longitudinal Markers." Journal of the American Statistical Association 103, no. 481 (March 1, 2008): 259–70. http://dx.doi.org/10.1198/016214507000000356.
Full textPlevritis, Sylvia K. "Modeling disease progression in outcomes research." Academic Radiology 6 (January 1999): S132—S133. http://dx.doi.org/10.1016/s1076-6332(99)80108-1.
Full textYoung, Alexandra L., Felix J. S. Bragman, Bojidar Rangelov, MeiLan K. Han, Craig J. Galbán, David A. Lynch, David J. Hawkes, et al. "Disease Progression Modeling in Chronic Obstructive Pulmonary Disease." American Journal of Respiratory and Critical Care Medicine 201, no. 3 (February 1, 2020): 294–302. http://dx.doi.org/10.1164/rccm.201908-1600oc.
Full textRooney, William D., Yosef A. Berlow, William T. Triplett, Sean C. Forbes, Rebecca J. Willcocks, Dah-Jyuu Wang, Ishu Arpan, et al. "Modeling disease trajectory in Duchenne muscular dystrophy." Neurology 94, no. 15 (March 17, 2020): e1622-e1633. http://dx.doi.org/10.1212/wnl.0000000000009244.
Full textZhou, Jiayu, Jun Liu, Vaibhav A. Narayan, and Jieping Ye. "Modeling disease progression via multi-task learning." NeuroImage 78 (September 2013): 233–48. http://dx.doi.org/10.1016/j.neuroimage.2013.03.073.
Full textMehdipour Ghazi, Mostafa, Mads Nielsen, Akshay Pai, Marc Modat, M. Jorge Cardoso, Sébastien Ourselin, and Lauge Sørensen. "Robust parametric modeling of Alzheimer’s disease progression." NeuroImage 225 (January 2021): 117460. http://dx.doi.org/10.1016/j.neuroimage.2020.117460.
Full textSun, Zhaonan, Soumya Ghosh, Ying Li, Yu Cheng, Amrita Mohan, Cristina Sampaio, and Jianying Hu. "A probabilistic disease progression modeling approach and its application to integrated Huntington’s disease observational data." JAMIA Open 2, no. 1 (January 7, 2019): 123–30. http://dx.doi.org/10.1093/jamiaopen/ooy060.
Full textGomeni, Roberto, Monica Simeoni, Marina Zvartau-Hind, Michael C. Irizarry, Daren Austin, and Michael Gold. "Modeling Alzheimer's disease progression using the disease system analysis approach." Alzheimer's & Dementia 8, no. 1 (July 22, 2011): 39–50. http://dx.doi.org/10.1016/j.jalz.2010.12.012.
Full textCook, Sarah F., and Robert R. Bies. "Disease Progression Modeling: Key Concepts and Recent Developments." Current Pharmacology Reports 2, no. 5 (August 15, 2016): 221–30. http://dx.doi.org/10.1007/s40495-016-0066-x.
Full textDissertations / Theses on the topic "Disease progression modeling"
Huszti, Ella. "Markov modeling of disease progression and mortality." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95060.
Full textLes études pronostiques sur l'évolution et la mortalité de certaines pathologies sont essentielles pour comprendre le rôle de certains facteurs pronostiques et ainsi, améliorer le pronostic et finalement aider dans le choix des interventions thérapeutiques appropriées. Jusqu'à présent, les études de ce type ont été souvent confrontées à d'importantes limitations dans les données et/ou les méthodes statistiques disponibles. Une des difficultés concerne la discrimination, pour un même facteur pronostique, de ses effets sur différents critères cliniques ou événements concurrents, comme la récidive de la maladie vs le décès sans récidive, ou le décès dû à la pathologie vs le décès dû à d'autres causes. Ce problème devient d'autant plus important que les sources de données, comme les registres, enregistrent souvent uniquement la date de décès mais pas la cause. Ceci peut conduire à des biais dans l'évaluation du rôle des facteurs pronostiques dont l'effet sur la mortalité spécifique dû à la pathologie est différent de celui sur la mortalité toutes causes confondues. Il est donc important d'utiliser des méthodes qui puissent prendre en compte correctement à la fois (i) les différentes évolutions possibles de la pathologie et (ii) l'absence de la connaissance de la cause de décès. Les problèmes méthodologiques mentionnés précédemment sont traités dans 3 articles. Les études empiriques précédentes ont suggéré des avantages potentiels à utiliser les modèles multi-états de Markov à la place des modèles de survie conventionnels dans l'analyse des risques compétitifs et des différentes phases possibles d'évolution d'une pathologie. Le premier article tente d'évaluer méthodiquement, à l'aide de simulations, les performances des modèles de Markov dans ce contexte et confirme l'exactitude à la fois de l'estimation des coefficients de la régression et des tests d'hypothèse. D'un autre coté, les mod
Sauty, Benoît. "Multimodal modelling of Alzheimer's Disease progression." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS348.
Full textAlzheimer's disease (AD) is a multi-facet pathology, that can be monitored through a variety of data types. This thesis aims to leverage multimodal longitudinal data, especially imaging scans and cognitive tests, to provide a statistical description of the progression of AD and to enable individual forecasting of future decline. Mixed-effect disease progression models (DPMs) are commonly used for these tasks. In this context, our first contribution questions the frequent assumption that biomarkers follow linear or logistic functions over time, and we propose a geometric framework that assumes the data lie on a manifold and follow geodesics over time. We learn the Riemannian metric of the observation space and are able to model a wider variety of biomarkers, without priors on the shape of the trajectory over time. Using variational auto-encoders, we then extend this framework to neuroimaging data (MRI or PET scans), in order to provide high-dimensional progression models that describe the patterns of structural and functional alterations of the brain over the course of AD. We then apply this family of DPMs to clinical studies data in order to investigate the heterogeneity of AD progression, due to APOE-e4 genotype and sex on patterns of brain alterations. Lastly, we use said DPMs with a set of imaging and fluid biomarkers to identify the specific combinations of input features that best forecast cognitive declines in patients at different stages of the disease. The thesis demonstrates that DPMs can effectively model the progression of AD using a great variety of multimodal longitudinal data and provide valuable insights into the disease's clinical manifestations and progression. These findings can inform clinical trial design and facilitate more accurate prognosis and individualized treatment strategies for patients with AD
McHugh, Kevin J. "Age-related macular degeneration: interventional tissue engineering and predictive modeling of disease progression." Thesis, Boston University, 2014. https://hdl.handle.net/2144/19690.
Full textAge-related macular degeneration (AMD) is the leading cause of irreversible blindness in people over the age of 50. As many as 50 million people are affected by AMD worldwide and prevalence is expected to continue to rise due to an aging population. There are two forms of the disease, dry (geographic atrophy) and wet (choroidal neovascularization), both of which result in retinal degeneration and central vision loss. Although anti-vascular endothelial growth factor therapies are moderately successful at treating the wet form, there are no treatments currently available for the more common dry form. Pharmacological therapies have been extensively explored for the treatment of dry AMD, but have achieved little success because the pathogenesis underlying AMD is unknown and likely varies among patients . Recently, tissue engineering has emerged as a promising approach to restore function by replacing diseased retinal tissue with healthy retinal pigment epithelium (RPE). While AMD-associated vision loss occurs when photoreceptors degenerate, this process arises as a consequence of earlier RPE dysfunction. In the healthy retina, the RPE acts as a critical regulator of the microenvironment for both photoreceptors and the nearby vasculature. However in AMD, the RPE no longer performs these essential homeostatic functions leading to photoreceptor apoptosis and vision loss. This dissertation describes the development and in vitro characterization of a tissue engineering scaffold for RPE delivery as potential treatment for dry AMD. First, a novel microfabrication-based method termed "pore casting" was developed to produce thin scaffolds with highly controlled pore size, shape, and spacing. Next, human RPE were cultured on pore-cast poly(c-caprolactone) (PCL) scaffolds and compared to cells on track-etched polyester, the standard RPE culture substrate. RPE on porous PCL demonstrated enhanced maturation and function compared to track-etched polyester including improved pigmentation, barrier formation, gene expression, growth factor secretion, and phagocytic degradation. Lastly, this study established a patient-specific method for predicting AMD progression using retinal oxygen concentration. This approach differs from current diagnosis techniques because it uses physiologically-relevant mechanisms rather than generalized clinical associations which have little, if any, prognostic value.
Shelton, Morgan Griffin. "Modeling the Effects of Supercomplex Formation and Stress Response on Alzheimer’S Disease Progression." W&M ScholarWorks, 2019. https://scholarworks.wm.edu/etd/1563899025.
Full textConrado, Daniela J., Timothy Nicholas, Kuenhi Tsai, Sreeraj Macha, Vikram Sinha, Julie Stone, Brian Corrigan, et al. "Dopamine Transporter Neuroimaging as an Enrichment Biomarker in Early Parkinson's Disease Clinical Trials: A Disease Progression Modeling Analysis." WILEY, 2018. http://hdl.handle.net/10150/626602.
Full textHubbard, Rebecca Allana. "Modeling a non-homogeneous Markov process via time transformation /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9607.
Full textBône, Alexandre. "Learning adapted coordinate systems for the statistical analysis of anatomical shapes. Applications to Alzheimer's disease progression modeling." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS273.
Full textThis thesis aims to build coordinate systems for shapes i.e. finite-dimensional metric spaces where shapes are represented by vectors. The goal of building such coordinate systems is to allow and facilitate the statistical analysis of shape data sets. The end-game motivation of our work is to predict and sub-type Alzheimer’s disease, based in part on knowledge extracted from banks of brain medical images. Even if these data banks are longitudinal, their variability remains mostly due to the large and normal inter-individual variability of the brain. The variability due to the progression of pathological alterations is of much smaller amplitude. The central objective of this thesis is to develop a coordinate system adapted for the statistical analysis of longitudinal shape data sets, able to disentangle these two sources of variability. As shown in the literature, the parallel transport operator can be leveraged to achieve this desired disentanglement, for instance by defining the notion of exp-parallel curves on a manifold. Using this tool on shape spaces comes however with theoretical and computational challenges, tackled in the first part of this thesis. Finally, if shape spaces are commonly equipped with a manifold-like structure in the field of computational anatomy, the underlying classes of diffeomorphisms are however most often largely built and parameterized without taking into account the data at hand. The last major objective of this thesis is to build deformation-based coordinate systems where the parameterization of deformations is adapted to the data set of interest
Robertson, Chadia L. "Analysis of the Role of Astrocyte Elevated Gene-1 in Normal Liver Physiology and in the Onset and Progression of Hepatocellular Carcinoma." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3573.
Full textdePillis-Lindheim, Lydia. "Disease Correlation Model: Application to Cataract Incidence in the Presence of Diabetes." Scholarship @ Claremont, 2013. http://scholarship.claremont.edu/scripps_theses/294.
Full textLaranjeira, Simão. "Modelling the progression of neurodegenerative diseases." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:ebb621d0-e4e6-405e-9e54-ba385c3ebd0a.
Full textBooks on the topic "Disease progression modeling"
Aspden, Richard, and Jenny Gregory. Morphology. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0011.
Full textBook chapters on the topic "Disease progression modeling"
Camargo, Anyela, and Jan T. Kim. "Disease Progression Modeling." In Encyclopedia of Systems Biology, 582. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_221.
Full textIbarra, Manuel, Marianela Lorier, and Iñaki F. Trocóniz. "Pharmacometrics: Disease Progression Modeling." In The ADME Encyclopedia, 939–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-84860-6_174.
Full textIbarra, Manuel, Marianela Lorier, and Iñaki F. Trocóniz. "Pharmacometrics: Disease Progression Modeling." In The ADME Encyclopedia, 1–7. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51519-5_174-1.
Full textNg, Kenney, Mohamed Ghalwash, Prithwish Chakraborty, Daby M. Sow, Akira Koseki, Hiroki Yanagisawa, and Michiharu Kudo. "Data-Driven Disease Progression Modeling." In Health Informatics, 247–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07912-2_17.
Full textMould, Diane R. "Modeling the Progression of Disease." In Pharmacokinetics in Drug Development, 57–90. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-7937-7_3.
Full textOxtoby, Neil P. "Data-Driven Disease Progression Modeling." In Machine Learning for Brain Disorders, 511–32. New York, NY: Springer US, 2012. http://dx.doi.org/10.1007/978-1-0716-3195-9_17.
Full textSelf, Steve, and Yudi Pawitan. "Modeling a Marker of Disease Progression and Onset of Disease." In AIDS Epidemiology, 231–55. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4757-1229-2_11.
Full textVenkatraghavan, Vikram, Esther E. Bron, Wiro J. Niessen, and Stefan Klein. "A Discriminative Event Based Model for Alzheimer’s Disease Progression Modeling." In Lecture Notes in Computer Science, 121–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59050-9_10.
Full textLey-Chavez, Adriana, and Julia L. Higle. "MODELING DISEASE PROGRESSION AND RISK-DIFFERENTIATED SCREENING FOR CERVICAL CANCER PREVENTION." In Decision Analytics and Optimization in Disease Prevention and Treatment, 153–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781118960158.ch7.
Full textRivail, Antoine, Ursula Schmidt-Erfurth, Wolf-Dieter Vogl, Sebastian M. Waldstein, Sophie Riedl, Christoph Grechenig, Zhichao Wu, and Hrvoje Bogunovic. "Modeling Disease Progression in Retinal OCTs with Longitudinal Self-supervised Learning." In Predictive Intelligence in Medicine, 44–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32281-6_5.
Full textConference papers on the topic "Disease progression modeling"
Yang, Xi, Ge Gao, and Min Chi. "Hierarchical Apprenticeship Learning for Disease Progression Modeling." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/265.
Full textWang, Xulong, Jun Qi, Yun Yang, and Po Yang. "A Survey of Disease Progression Modeling Techniques for Alzheimer's Diseases." In 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). IEEE, 2019. http://dx.doi.org/10.1109/indin41052.2019.8972091.
Full textPearson, Ronald K., Robert J. Kingan, and Alan Hochberg. "Disease progression modeling from historical clinical databases." In Proceeding of the eleventh ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1081870.1081974.
Full textSukkar, R., E. Katz, Yanwei Zhang, D. Raunig, and B. T. Wyman. "Disease progression modeling using Hidden Markov Models." In 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2012. http://dx.doi.org/10.1109/embc.2012.6346556.
Full textLiu, Xiaoli, Jiali Li, and Peng Cao. "Modeling Disease Progression with Deep Neural Networks." In ISICDM 2020: The Fourth International Symposium on Image Computing and Digital Medicine. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3451421.3451429.
Full textZhou, Jiayu, Jun Liu, Vaibhav A. Narayan, and Jieping Ye. "Modeling disease progression via fused sparse group lasso." In the 18th ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2339530.2339702.
Full textZheng, Kaiping, Wei Wang, Jinyang Gao, Kee Yuan Ngiam, Beng Chin Ooi, and Wei Luen James Yip. "Capturing Feature-Level Irregularity in Disease Progression Modeling." In CIKM '17: ACM Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3132847.3132944.
Full textJeong, Seungwoo, Wonsik Jung, Junghyo Sohn, and Heung-Il Suk. "Deep Geometrical Learning for Alzheimer’s Disease Progression Modeling." In 2022 IEEE International Conference on Data Mining (ICDM). IEEE, 2022. http://dx.doi.org/10.1109/icdm54844.2022.00031.
Full textRoberts, Michael D., Ian A. Sigal, Yi Liang, Claude F. Burgoyne, and J. Crawford Downs. "Finite Element Modeling of the Connective Tissues of the Optic Nerve Head in Bilaterally Normal Monkeys." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206522.
Full textZhou, Menghui, Xulong Wang, Yun Yang, Fengtao Nan, Yu Zhang, Jun Qi, and Po Yang. "Modeling Disease Progression Flexibly with Nonlinear Disease Structure via Multi-task Learning." In 2021 17th International Conference on Mobility, Sensing and Networking (MSN). IEEE, 2021. http://dx.doi.org/10.1109/msn53354.2021.00063.
Full textReports on the topic "Disease progression modeling"
Barhak, Jacob. Supplemental Information: The Reference Model is a Multi-Scale Ensemble Model of COVID-19. Outbreak, May 2021. http://dx.doi.org/10.34235/b7eaa32b-1a6b-444f-9848-76f83f5a733c.
Full textRuvinsky, Alicia, Maria Seale, R. Salter, and Natàlia Garcia-Reyero. An ontology for an epigenetics approach to prognostics and health management. Engineer Research and Development Center (U.S.), March 2023. http://dx.doi.org/10.21079/11681/46632.
Full text