Academic literature on the topic 'Discriminative classifier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Discriminative classifier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Discriminative classifier"
Tan, Alan W. C., M. V. C. Rao, and B. S. Daya Sagar. "A Discriminative Signal Subspace Speech Classifier." IEEE Signal Processing Letters 14, no. 2 (February 2007): 133–36. http://dx.doi.org/10.1109/lsp.2006.882091.
Full textHassan, Anthony Rotimi, Rasaki Olawale Olanrewaju, Queensley C. Chukwudum, Sodiq Adejare Olanrewaju, and S. E. Fadugba. "Comparison Study of Generative and Discriminative Models for Classification of Classifiers." International Journal of Mathematics and Computers in Simulation 16 (June 28, 2022): 76–87. http://dx.doi.org/10.46300/9102.2022.16.12.
Full textHu, Kai-Jun, He-Feng Yin, and Jun Sun. "Discriminative non-negative representation based classifier for image recognition." Journal of Algorithms & Computational Technology 15 (January 2021): 174830262110449. http://dx.doi.org/10.1177/17483026211044922.
Full textSHI, Hong-bo, Ya-qin LIU, and Ai-jun LI. "Discriminative parameter learning of Bayesian network classifier." Journal of Computer Applications 31, no. 4 (June 9, 2011): 1074–78. http://dx.doi.org/10.3724/sp.j.1087.2011.01074.
Full textDevi, Rajkumari Bidyalakshmi, Yambem Jina Chanu, and Khumanthem Manglem Singh. "Incremental visual tracking via sparse discriminative classifier." Multimedia Systems 27, no. 2 (January 18, 2021): 287–99. http://dx.doi.org/10.1007/s00530-020-00748-4.
Full textTang, Hui, and Kui Jia. "Discriminative Adversarial Domain Adaptation." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5940–47. http://dx.doi.org/10.1609/aaai.v34i04.6054.
Full textRopelewska, Ewa. "The Application of Computer Image Analysis Based on Textural Features for the Identification of Barley Kernels Infected with Fungi of the Genus Fusarium." Agricultural Engineering 22, no. 3 (September 1, 2018): 49–56. http://dx.doi.org/10.1515/agriceng-2018-0026.
Full textĆwiklińska-Jurkowska, Małgorzata M. "Visualization and Comparison of Single and Combined Parametric and Nonparametric Discriminant Methods for Leukemia Type Recognition Based on Gene Expression." Studies in Logic, Grammar and Rhetoric 43, no. 1 (December 1, 2015): 73–99. http://dx.doi.org/10.1515/slgr-2015-0043.
Full textPrevost, Lionel, Loïc Oudot, Alvaro Moises, Christian Michel-Sendis, and Maurice Milgram. "Hybrid generative/discriminative classifier for unconstrained character recognition." Pattern Recognition Letters 26, no. 12 (September 2005): 1840–48. http://dx.doi.org/10.1016/j.patrec.2005.03.005.
Full textAhmadi, Ehsan, Zohreh Azimifar, Maryam Shams, Mahmoud Famouri, and Mohammad Javad Shafiee. "Document image binarization using a discriminative structural classifier." Pattern Recognition Letters 63 (October 2015): 36–42. http://dx.doi.org/10.1016/j.patrec.2015.06.008.
Full textDissertations / Theses on the topic "Discriminative classifier"
Masip, Rodó David. "Face Classification Using Discriminative Features and Classifier Combination." Doctoral thesis, Universitat Autònoma de Barcelona, 2005. http://hdl.handle.net/10803/3051.
Full textPer altra banda, en la segon apart de la tesi explorem el rol de les característiques externes en el procés de classificació facial, i presentem un nou mètode per extreure un conjunt alineat de característiques a partir de la informació externa que poden ser combinades amb les tècniques clàssiques millorant els resultats globals de classificació.
As technology evolves, new applications dealing with face classification appear. In pattern recognition, faces are usually seen as points in a high dimensional spaces defined by their pixel values. This approach must deal with several problems such as: the curse of dimensionality, the presence of partial occlusions or local changes in the illumination. Traditionally, only the internal features of face images have been used for classification purposes, where usually a feature extraction step is performed. Feature extraction techniques allow to reduce the influence of the problems mentioned, reducing also the noise inherent from natural images and learning invariant characteristics from face images. In the first part of this thesis some internal feature extraction methods are presented: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Non Negative Matrix Factorization (NMF), and Fisher Linear Discriminant Analysis (FLD), all of them making some kind of the assumption on the data to classify. The main contribution of our work is a non parametric feature extraction family of techniques using the Adaboost algorithm. Our method makes no assumptions on the data to classify, and incrementally builds the projection matrix taking into account the most difficult samples.
On the other hand, in the second part of this thesis we also explore the role of external features in face classification purposes, and present a method for extracting an aligned feature set from external face information that can be combined with the classic internal features improving the global performance of the face classification task.
Georgatzis, Konstantinos. "Dynamical probabilistic graphical models applied to physiological condition monitoring." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28838.
Full textKlautau, Aldebaro. "Speech recognition using discriminative classifiers /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3091208.
Full textXue, Jinghao. "Aspects of generative and discriminative classifiers." Thesis, Connect to e-thesis, 2008. http://theses.gla.ac.uk/272/.
Full textPh.D. thesis submitted to the Department of Statistics, Faculty of Information and Mathematical Sciences, University of Glasgow, 2008. Includes bibliographical references. Print version also available.
Pernot, Etienne. "Choix d'un classifieur en discrimination." Paris 9, 1994. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1994PA090014.
Full textKatz, Marcel [Verfasser]. "Discriminative classifiers for speaker Recognition / Marcel Katz." Saarbrücken : Südwestdeutscher Verlag für Hochschulschriften, 2009. http://www.vdm-verlag.de.
Full textABDALLAH, HICHAM. "Application de l'analyse relationnelle pour classifier descripteurs et modalites en mode discrimination." Paris 6, 1996. http://www.theses.fr/1996PA066001.
Full textDastile, Xolani Collen. "Improved tree species discrimination at leaf level with hyperspectral data combining binary classifiers." Thesis, Rhodes University, 2011. http://hdl.handle.net/10962/d1002807.
Full textRüther, Johannes. "Navigating Deep Classifiers : A Geometric Study Of Connections Between Adversarial Examples And Discriminative Features In Deep Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291775.
Full textÄven om djupa neurala nät är kraftfulla och effektiva i många användningar, är deras stora sårbarhet för medvetna störningar (adversarial perturbations) fortfarande en kritisk begränsning inom områden som säkerhet, individanpassad medicin eller autonoma system. Även om känsligheten för medvetna störningar i allmänhet betraktas som en brist hos klassifierare baserade på djupa nät, tyder färsk forskning på att de i själva verket är ett uttryck för orobusta features som klassifierarna utnyttjar för att göra exakta prediktioner. I detta arbete beräknar och analyserar vi därför systematiskt dessa störningar för att förstå hur de förhåller sig till diskriminativa features som modellerna använder. De flesta insikter som erhålls i detta arbete har ett geometriskt perspektiv på klassificerare, särskilt placeringen av beslutsgränserna i närheten av datasamplen. Störningar som framgångsrikt kan ändra på klassificeringsbeslut utformas som riktning där datasamplen kan flyttas in till andra klassificeringsregioner. På så sätt avslöjar vi att det är förvånansvärt enkelt att navigera i klassificeringsrymden: Ett godtyckligt sampel kan flyttas till en annan närliggande klassificeringsregion genom att man följer riktningen som extraherats från medvetna störningar. Dessutom avslöjar vi att när det gäller enkla datauppsättningar som MNIST, består de diskriminerande features som används av djupa klassifierare, tränade med standardmetoder, faktiskt av element som återfinns bland de medvetna störningsexemplen. Slutligen visar våra resultat också att medvetna störningar i grunden förändrar klassificerargeometrin i närheten av datasampel, vilket ger mer varierande och komplexa beslutsgränser.
Musayeva, Khadija. "Generalization Performance of Margin Multi-category Classifiers." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0096/document.
Full textThis thesis deals with the theory of margin multi-category classification, and is based on the statistical learning theory founded by Vapnik and Chervonenkis. We are interested in deriving generalization bounds with explicit dependencies on the number C of categories, the sample size m and the margin parameter gamma, when the loss function considered is a Lipschitz continuous margin loss function. Generalization bounds rely on the empirical performance of the classifier as well as its "capacity". In this work, the following scale-sensitive capacity measures are considered: the Rademacher complexity, the covering numbers and the fat-shattering dimension. Our main contributions are obtained under the assumption that the classes of component functions implemented by a classifier have polynomially growing fat-shattering dimensions and that the component functions are independent. In the context of the pathway of Mendelson, which relates the Rademacher complexity to the covering numbers and the latter to the fat-shattering dimension, we study the impact that decomposing at the level of one of these capacity measures has on the dependencies on C, m and gamma. In particular, we demonstrate that the dependency on C can be substantially improved over the state of the art if the decomposition is postponed to the level of the metric entropy or the fat-shattering dimension. On the other hand, this impacts negatively the rate of convergence (dependency on m), an indication of the fact that optimizing the dependencies on the three basic parameters amounts to looking for a trade-off
Books on the topic "Discriminative classifier"
Baillo, Amparo, Antonio Cuevas, and Ricardo Fraiman. Classification methods for functional data. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.10.
Full textSchor, Paul. Counting Americans. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199917853.001.0001.
Full textAndrade, M. J. Tumours and masses. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199599639.003.0022.
Full textAndrade, Maria João, Jadranka Separovic Hanzevacki, and Ricardo Ronderos. Cardiac tumours. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0052.
Full textBook chapters on the topic "Discriminative classifier"
Zhu, Yi, and Baojie Fan. "Multi-classifier Guided Discriminative Siamese Tracking Network." In Pattern Recognition and Computer Vision, 102–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60639-8_9.
Full textFeng, Qi, Fengzhan Tian, and Houkuan Huang. "A Discriminative Learning Method of TAN Classifier." In Lecture Notes in Computer Science, 443–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75256-1_40.
Full textLiu, Cheng-Lin. "Polynomial Network Classifier with Discriminative Feature Extraction." In Lecture Notes in Computer Science, 732–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11815921_80.
Full textShen, Xiang-Jun, Wen-Chao Zhang, Wei Cai, Ben-Bright B. Benuw, He-Ping Song, Qian Zhu, and Zheng-Jun Zha. "Building Locally Discriminative Classifier Ensemble Through Classifier Fusion Among Nearest Neighbors." In Lecture Notes in Computer Science, 211–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48890-5_21.
Full textLucas, Simon M. "Discriminative Training of the Scanning N-Tuple Classifier." In Computational Methods in Neural Modeling, 222–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44868-3_29.
Full textDu, Jinhua, Junbo Guo, and Fei Zhao. "Discriminative Latent Variable Based Classifier for Translation Error Detection." In Communications in Computer and Information Science, 127–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41644-6_13.
Full textSharma, Vijay K., Bibhudendra Acharya, K. K. Mahapatra, and Vijay Nath. "Learning Discriminative Classifier Parameter for Visual Object Tracking by Detection." In Nanoelectronics, Circuits and Communication Systems, 355–69. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2854-5_31.
Full textKishore Kumar, K., and P. Trinatha Rao. "Face Verification Across Ages Using Discriminative Methods and See 5.0 Classifier." In Proceedings of First International Conference on Information and Communication Technology for Intelligent Systems: Volume 2, 439–48. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30927-9_43.
Full textHou, Xielian, Caikou Chen, Shengwei Zhou, and Jingshan Li. "Discriminative Weighted Low-Rank Collaborative Representation Classifier for Robust Face Recognition." In Biometric Recognition, 257–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97909-0_28.
Full textPappas, Emmanuel, and Sotiris Kotsiantis. "Integrating Global and Local Application of Discriminative Multinomial Bayesian Classifier for Text Classification." In Advances in Intelligent Systems and Computing, 49–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32063-7_6.
Full textConference papers on the topic "Discriminative classifier"
Yang, Jian, and Delin Chu. "Sparse Representation Classifier Steered Discriminative Projection." In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.175.
Full textNwe, Tin Lay, Balaji Nataraj, Xie Shudong, Li Yiqun, Lin Dongyun, and Dong Sheng. "Discriminative Features for Incremental Learning Classifier." In 2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019. http://dx.doi.org/10.1109/icip.2019.8803133.
Full textAkhtar, Naveed, Ajmal Mian, and Fatih Porikli. "Joint Discriminative Bayesian Dictionary and Classifier Learning." In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. http://dx.doi.org/10.1109/cvpr.2017.417.
Full textLiu, Jie, Jiu-Qing Song, and Ya-Lou Huang. "A Generative/Discriminative Hybrid Model: Bayes Perceptron Classifier." In 2007 International Conference on Machine Learning and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icmlc.2007.4370618.
Full textGözüaçık, Ömer, Alican Büyükçakır, Hamed Bonab, and Fazli Can. "Unsupervised Concept Drift Detection with a Discriminative Classifier." In CIKM '19: The 28th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3357384.3358144.
Full textMei, Peng, Fuquan Zhang, Lin Xu, Hongyong Leng, Lei Chen, and Guo Liu. "Transitioning conditional probability to discriminative classifier over inductive reasoning." In 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST). IEEE, 2017. http://dx.doi.org/10.1109/icawst.2017.8256510.
Full textBaggenstoss, Paul M. "The Projected Belief Network Classifier: both Generative and Discriminative." In 2020 28th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco47968.2020.9287706.
Full textWang, Yan, Dawei Yang, and Guangsan Li. "Research on weighted naive Bayesian classifier in discriminative tracking." In 2014 International Conference on Mechatronics, Electronic, Industrial and Control Engineering. Paris, France: Atlantis Press, 2014. http://dx.doi.org/10.2991/meic-14.2014.386.
Full textWang, Weiwei, Chunyu Yang, and Qiao Li. "Discriminative Analysis Dictionary and Classifier Learning for Pattern Classification." In 2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019. http://dx.doi.org/10.1109/icip.2019.8803003.
Full textYan, Yuguang, Wen Li, Michael Ng, Mingkui Tan, Hanrui Wu, Huaqing Min, and Qingyao Wu. "Learning Discriminative Correlation Subspace for Heterogeneous Domain Adaptation." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/454.
Full textReports on the topic "Discriminative classifier"
Nelson, Bruce, and Ammon Birenzvigo. Linguistic-Fuzzy Classifier for Discrimination and Confidence Value Estimation. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada426951.
Full textWurtz, R., and A. Kaplan. Statistical and Machine-Learning Classifier Framework to Improve Pulse Shape Discrimination System Design. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1236750.
Full text