Academic literature on the topic 'Discrete Velocity Boltzmann Schemes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Discrete Velocity Boltzmann Schemes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Discrete Velocity Boltzmann Schemes"
Hsu, C. T., S. W. Chiang, and K. F. Sin. "A Novel Dynamic Quadrature Scheme for Solving Boltzmann Equation with Discrete Ordinate and Lattice Boltzmann Methods." Communications in Computational Physics 11, no. 4 (April 2012): 1397–414. http://dx.doi.org/10.4208/cicp.150510.150511s.
Full textMischler, Stéphane. "Convergence of Discrete-Velocity Schemes for the Boltzmann Equation." Archive for Rational Mechanics and Analysis 140, no. 1 (November 1, 1997): 53–77. http://dx.doi.org/10.1007/s002050050060.
Full textBuet, C. "Conservative and Entropy Schemes for Boltzmann Collision Operator of Polyatomic Gases." Mathematical Models and Methods in Applied Sciences 07, no. 02 (March 1997): 165–92. http://dx.doi.org/10.1142/s0218202597000116.
Full textDiaz, Manuel A., Min-Hung Chen, and Jaw-Yen Yang. "High-Order Conservative Asymptotic-Preserving Schemes for Modeling Rarefied Gas Dynamical Flows with Boltzmann-BGK Equation." Communications in Computational Physics 18, no. 4 (October 2015): 1012–49. http://dx.doi.org/10.4208/cicp.171214.210715s.
Full textMATTILA, KEIJO K., DIOGO N. SIEBERT, LUIZ A. HEGELE, and PAULO C. PHILIPPI. "HIGH-ORDER LATTICE-BOLTZMANN EQUATIONS AND STENCILS FOR MULTIPHASE MODELS." International Journal of Modern Physics C 24, no. 12 (November 13, 2013): 1340006. http://dx.doi.org/10.1142/s0129183113400068.
Full textWang, Liang, Xuhui Meng, Hao-Chi Wu, Tian-Hu Wang, and Gui Lu. "Discrete effect on single-node boundary schemes of lattice Bhatnagar–Gross–Krook model for convection-diffusion equations." International Journal of Modern Physics C 31, no. 01 (December 20, 2019): 2050017. http://dx.doi.org/10.1142/s0129183120500175.
Full textMieussens, Luc. "Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries." Journal of Computational Physics 162, no. 2 (August 2000): 429–66. http://dx.doi.org/10.1006/jcph.2000.6548.
Full textAristov, V. V., O. V. Ilyin, and O. A. Rogozin. "Kinetic multiscale scheme based on the discrete-velocity and lattice-Boltzmann methods." Journal of Computational Science 40 (February 2020): 101064. http://dx.doi.org/10.1016/j.jocs.2019.101064.
Full textBuet, C. "A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics." Transport Theory and Statistical Physics 25, no. 1 (January 1996): 33–60. http://dx.doi.org/10.1080/00411459608204829.
Full textWu, Junlin, Zhihui Li, Aoping Peng, and Xinyu Jiang. "Numerical Simulations of Unsteady Flows From Rarefied Transition to Continuum Using Gas-Kinetic Unified Algorithm." Advances in Applied Mathematics and Mechanics 7, no. 5 (July 21, 2015): 569–96. http://dx.doi.org/10.4208/aamm.2014.m523.
Full textDissertations / Theses on the topic "Discrete Velocity Boltzmann Schemes"
Håkman, Olof. "Boltzmann Equation and Discrete Velocity Models : A discrete velocity model for polyatomic molecules." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-76143.
Full textI studiet av kinetisk teori och speciellt i studiet av dynamik för tunna gaser vänder man sig ofta till Boltzmannekvationen. Den matematiska teorien utvecklad av Ludwig Boltzmann var vid första anblicken tillämpbar i flyg- och rymdteknik och strömningsmekanik. Idag generaliseras metoder i kinetisk teori till andra områden, till exempel inom molekylärbiologi och socioekonomi, vilket gör att vi har ett fortsatt behov av att finna effektiva lösningsmetoder. Vi studerar i denna uppsats den underliggande teorin av den kontinuerliga och diskreta Boltzmannekvationen för monatomiska gaser. Vi utvidgar teorin där det behövs för att täcka fallet då kolliderande molekyler innehar olika nivåer av intern energi. Vi diskuterar huvudsakligen diskreta hastighetsmodeller och presenterar explicita beräkningar för en modell av en gas bestående av polyatomiska molekyler modellerad med två lägen av intern energi.
Morris, Aaron Benjamin. "Investigation of a discrete velocity Monte Carlo Boltzmann equation." Thesis, [Austin, Tex. : University of Texas, 2009. http://hdl.handle.net/2152/ETD-UT-2009-05-127.
Full textBernhoff, Niclas. "On Half-Space and Shock-Wave Problems for Discrete Velocity Models of the Boltzmann Equation." Doctoral thesis, Karlstads universitet, Fakulteten för teknik- och naturvetenskap, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-2373.
Full textSpäth, Peter. "Renewed Theory, Interfacing, and Visualization of Thermal Lattice Boltzmann Schemes." Doctoral thesis, Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000648.
Full textIn dieser Doktorarbeit wird das Gitter-Boltzmann-Schema, eine heuristische Methode fuer die Simulation von Stroemungen innerhalb komplexer Raender, untersucht. Die zugrundeliegende Theorie wird unter neuen Gesichtspunkten, insbesondere dem Prinzip der Entropiemaximierung, betrachtet. Des weiteren werden neuartige Methoden fuer die Modellierung der Geometrie (einschl. beweglicher Raender) und der visuellen Darstellung aufgezeigt. Eine objektorientierte Implementierung wird vorgestellt, wobei die Kommunikation zwischen den Objekten über Interpreter-Objekte und die Kommunikation mit der Aussenwelt ueber Interprozess-Kommunikation gehandhabt wird. Mit dem neuen theoretischen Ansatz wird die Gueltigkeit bestehender Gitter-Boltzmann-Schemata fuer die Anwendung auf Stroemungen mit nicht konstanter Temperatur untersucht
Février, Tony. "Extension et analyse des schémas de Boltzmann sur réseau : les schémas à vitesse relative." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112316/document.
Full textIn this PhD thesis, a new class of lattice Boltzmann schemes called relative velocity schemes is introduced and studied. The purpose of lattice Boltzmann schemes is to approximate problems of macroscopic nature using the microscopic dynamic of Boltzmann type kinetic equations. They compute particle distributions through two phases of transport and relaxation, the particles moving on the nodes of a cartesian lattice. The multiple relaxation times schemes---MRT of d'Humières---, whose relaxation uses a set of moments, linear combinations of the particle distributions, constitutes the initial framework of the thesis. The relative velocity schemes extend the MRT d'Humières schemes. They originate from the cascaded automaton of Geier which provides more stability for the low viscosity regime of the Navier-Stokes equations. Their difference with the d'Humières schemes is carried by the relaxation : a set of moments relative to a velocity field parameter function of space and time is used. This difference is represented by a shifting matrix sending the fixed moments---The d'Humières schemes are associated with a zero velocity field parameter---On the relative moments. The algebraic structure of this matrix is studied. The cascaded automaton is then interpreted as a relative velocity scheme for a new set of polynomials defining the moments. The consistency study of the relative velocity schemes with the equivalent equations method is a keypoint of the thesis. These equations are derived for an arbitrary number of dimensions and velocities. They are then illustrated on examples like the D2Q9 scheme for the Navier-Stokes equations. These equivalent equations are also a tool to predict the stability behaviour of the schemes by analysing their diffusion and dispersion terms. In a last part, the stability according to the velocity field parameter is studied. Two cases especially interest us : a parameter equal to zero---D'Humières schemes---And equal to the fluid velocity---Cascaded automaton. The D2Q9 scheme for the Navier-Stokes equations is numerically studied with a linear Von Neumann analysis and some non linear test cases. The stability of the relative velocity schemes depends on the choice of the polynomials defining the moments. The most important improvement occurs if the polynomials of the cascaded automaton are chosen. We finally study the theoretical and numerical stability of a minimal bidimensional scheme for a linear advection diffusion equation. If the velocity field parameter is chosen equal to the advection velocity, some dispersion terms of the equivalent equations vanish unlike the d'Humières scheme. This implies a better stability behaviour for high velocities, characterized thanks to theoretical weighted stability notion
Jobic, Yann. "Numerical approach by kinetic methods of transport phenomena in heterogeneous media." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4723/document.
Full textA novel kinetic scheme satisfying an entropy condition is developed, tested and implemented for the simulation of practical problems. The construction of this new entropic scheme is presented. A classical hyperbolic system is approximated by a discrete velocity vector kinetic scheme (with the simplified BGK collisional operator), but applied to an inviscid compressible gas dynamics system with a small Mach number parameter, according to the approach of Carfora and Natalini (2008). The numerical viscosity is controlled, and tends to the physical viscosity of the Navier-Stokes system. The proposed numerical scheme is analyzed and formulated as an explicit finite volume flux vector splitting (FVS) scheme that is very easy to implement. It is close in spirit to Lattice Boltzmann schemes, but it has the advantage to satisfy a discrete entropy inequality under a CFL condition and a subcharacteristic stability condition involving a cell Reynolds number. The new scheme is proved to be second-order accurate in space. We show the efficiency of the method in terms of accuracy and robustness on a variety of classical benchmark tests. Some physical problems have been studied in order to show the usefulness of both schemes. The LB code was successfully used to determine the longitudinal dispersion of metallic foams, with the use of a novel indicator. The entropic code was used to determine the permeability tensor of various porous media, from the Fontainebleau sandstone (low porosity) to a redwood tree sample (high porosity). These results are pretty accurate. Finally, the entropic framework is applied to the advection-diffusion equation as a passive scalar
Hegermiller, David Benjamin. "A new method to incorporate internal energy into a discrete velocity Monte Carlo Boltzmann Equation solver." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4328.
Full texttext
Books on the topic "Discrete Velocity Boltzmann Schemes"
Succi, Sauro. Lattice Relaxation Schemes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0014.
Full textBook chapters on the topic "Discrete Velocity Boltzmann Schemes"
"Discrete-Velocity Models and Lattice Boltzmann Methods for Convection-Radiation Problems." In Progress in Computational Physics Volume 3: Novel Trends in Lattice-Boltzmann Methods, edited by Mapundi K. Banda and Mohammed Seaid, 53–90. BENTHAM SCIENCE PUBLISHERS, 2013. http://dx.doi.org/10.2174/9781608057160113030006.
Full textUKAI, S. "ON THE HALF–SPACE PROBLEM FOR THE DISCRETE VELOCITY MODEL OF THE BOLTZMANN EQUATION." In Series on Advances in Mathematics for Applied Sciences, 160–74. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789812816481_0005.
Full textSchürrer, F. "Discrete Models of the Boltzmann Equation in Quantum Optics and Arbitrary Partition of the Velocity Space." In Series on Advances in Mathematics for Applied Sciences, 259–98. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812796905_0010.
Full textTuck, Adrian F. "Radiative and Chemical Kinetic Implications." In Atmospheric Turbulence. Oxford University Press, 2008. http://dx.doi.org/10.1093/oso/9780199236534.003.0009.
Full textConference papers on the topic "Discrete Velocity Boltzmann Schemes"
Chen, Leitao, Laura Schaefer, and Xiaofeng Cai. "An Accurate Unstructured Finite Volume Discrete Boltzmann Method." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87136.
Full textMalkov, E. A., S. O. Poleshkin, and M. S. Ivanov. "Discrete velocity scheme for solving the Boltzmann equation with the GPGPU." In 28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4769532.
Full textHsu, C. T., S. W. Chiang, and K. F. Sin. "A Novel Dynamics Lattice Boltzmann Method for Gas Flows." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31237.
Full textKang, Shin K., and Yassin A. Hassan. "A Comparative Study of Interface Schemes in the Immersed Boundary Method for a Moving Solid Boundary Problem Using the Lattice Boltzmann Method." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30908.
Full textYang, L. M., C. Shu, and J. Wu. "Numerical Simulation of Microflows by a DOM With Streaming and Collision Processes." In ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6494.
Full textSuga, K., S. Takenaka, T. Ito, M. Kaneda, T. Kinjo, and S. Hyodo. "Lattice Boltzmann Flow Simulation in Micro-Nano Transitional Porous Media." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22283.
Full textLi, Like, Chen Chen, Renwei Mei, and James F. Klausner. "Conjugate Interface Heat and Mass Transfer Simulation With the Lattice Boltzmann Equation Method." In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21864.
Full textFrandsen, Jannette B. "A Lattice Boltzmann Bluff Body Model for VIV Suppression." In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92271.
Full textBazargan, Majid, and Mostafa Varmazyar. "Modeling of Free Convection Heat Transfer to a Supercritical Fluid in a Square Enclosure by the Lattice Boltzmann Method." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88463.
Full textFrandsen, Jannette B. "A Mesoscopic Model Approach to Passively Control Vortex Wakes Using Single/Multiple Bodies." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93759.
Full text