Journal articles on the topic 'Discrete time'

To see the other types of publications on this topic, follow the link: Discrete time.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Discrete time.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhu, Gaoyan, Lei Xiao, Bingzi Huo, and Peng Xue. "Photonic discrete-time quantum walks [Invited]." Chinese Optics Letters 18, no. 5 (2020): 052701. http://dx.doi.org/10.3788/col202018.052701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richman, M. S., T. W. Parks, and R. G. Shenoy. "Discrete-time, discrete-frequency, time-frequency analysis." IEEE Transactions on Signal Processing 46, no. 6 (June 1998): 1517–27. http://dx.doi.org/10.1109/78.678465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

P., Tymoshchuk. "SIMPLIFIED PARALLEL SORTING DISCRETE-TIME NEURAL NETWORK MODEL." Computer systems and network 2, no. 1 (March 23, 2017): 94–101. http://dx.doi.org/10.23939/csn2020.01.094.

Full text
Abstract:
A model of parallel sorting neural network of discrete-time has been proposed. The model is described by system of difference equations and by step functions. The model is based on simplified neural circuit of discrete-time that identifies maximal/minimal values of input data and is described by difference equation and by step functions. A bound from above on a number of iterations required for reaching convergence of search process to steady state is determined. The model does not need a knowledge of change range of input data. In order to use the model a minimal difference between values of input data should be known. The network can process unknown input data with finite values, located in arbitrary unknown finite range. The network is characterized by moderate computational complexity and complexity of software implementation, any finite resolution of input data, speed,. Computing simulation results illustrating efficiency of the network are given. Keywords — Parallel sorting, neural network, difference equation, computational complexity, hardware implementation.
APA, Harvard, Vancouver, ISO, and other styles
4

Else, Dominic V., Christopher Monroe, Chetan Nayak, and Norman Y. Yao. "Discrete Time Crystals." Annual Review of Condensed Matter Physics 11, no. 1 (March 10, 2020): 467–99. http://dx.doi.org/10.1146/annurev-conmatphys-031119-050658.

Full text
Abstract:
Experimental advances have allowed for the exploration of nearly isolated quantum many-body systems whose coupling to an external bath is very weak. A particularly interesting class of such systems is those that do not thermalize under their own isolated quantum dynamics. In this review, we highlight the possibility for such systems to exhibit new nonequilibrium phases of matter. In particular, we focus on discrete time crystals, which are many-body phases of matter characterized by a spontaneously broken discrete time-translation symmetry. We give a definition of discrete time crystals from several points of view, emphasizing that they are a nonequilibrium phenomenon that is stabilized by many-body interactions, with no analog in noninteracting systems. We explain the theory behind several proposed models of discrete time crystals, and compare several recent realizations, in different experimental contexts.
APA, Harvard, Vancouver, ISO, and other styles
5

Ramakalyan, A., P. Kavitha, and S. Harini Vijayalakshmi. "Discrete-time systems." Resonance 5, no. 4 (April 2000): 91–96. http://dx.doi.org/10.1007/bf02837910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ramakalyan, A., P. Kavitha, and S. Harini Vijayalakshmi. "Discrete-time systems." Resonance 5, no. 2 (February 2000): 39–49. http://dx.doi.org/10.1007/bf02838822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khan, A. R., F. Mehmood, and M. A. Shaikh. "Обобщение неравенств Островского на временных шкалах." Владикавказский математический журнал 25, no. 3 (September 25, 2023): 98–110. http://dx.doi.org/10.46698/q4172-3323-1923-j.

Full text
Abstract:
The idea of time scales calculus’ theory was initiated and introduced by Hilger (1988) in his PhD thesis order to unify discret and continuous analysis and to expend the discrete and continous theories to cases ``in between''. Since then, mathematical research in this field has exceeded more than 1000 publications and a lot of applications in the fields of science, i.e., operations research, economics, physics, engineering, statistics, finance and biology. Ostrowski proved an inequality to estimate the absolute deviation of a differentiable function from its integral mean. This result was obtained by applying the Montgomery identity. In the present paper we derive a generalization of the Montgomery identity to the various time scale versions such as discrete case, continuous case and the case of quantum calculus, by obtaining this generalization of Montgomery identity we would prove our results about the generalization of the Ostrowski inequalities (without weighted case) to the several time scales such as discrete case, continuous case and the case of quantum calculus and recapture the several published results of different authors of various papers and thus unify corresponding discrete version and continuous version. Similarly we would also derive our results about the generalization of the Ostrowski inequalities (weighted case) to the different time scales such as discrete case and continuous case and recapture the different published results of several authors of various papers and thus unify corresponding discrete version and continuous version. Moreover, we would use our obtained results (without weighted case) to the case of quantum calculus.
APA, Harvard, Vancouver, ISO, and other styles
8

Mostafa, El-Sayed M. E. "COMPUTATIONAL DESIGN OF OPTIMAL DISCRETE-TIME OUTPUT FEEDBACK CONTROLLERS." Journal of the Operations Research Society of Japan 51, no. 1 (2008): 15–28. http://dx.doi.org/10.15807/jorsj.51.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

FRYZ, Mykhailo, and Bogdana MLYNKO. "DISCRETE-TIME CONDITIONAL LINEAR RANDOM PROCESSES AND THEIR PROPERTIES." Herald of Khmelnytskyi National University. Technical sciences 309, no. 3 (May 26, 2022): 7–12. http://dx.doi.org/10.31891/2307-5732-2022-309-3-7-12.

Full text
Abstract:
Continuous-time conditional linear random process is represented as a stochastic integral of a random kernel driven by a process with independent increments. Such processes are used in the problems of mathematical modelling, computer simulation, and processing of stochastic signals, the physical nature of which generates them to be represented as the sum of many random impulses that occur at Poisson moments. Impulses are stochastically dependent functions, in contrast to another well-known mathematical model which is a linear random process, that has a similar structure but is represented as the sum of a large amount of independent random impulses that occur at Poisson moments of time. The application areas of these models are mathematical modelling, computer simulation, and processing of electroencephalographic signals, cardio signals, resource consumption processes (such as electricity consumption, water consumption, gas consumption), radar signals, etc. A discrete-time conditional linear random process has been defined in the paper, the relationships with corresponding continuous-time model has been shown. According to the given definition the discrete-time conditional linear random process can be considered as an output of linear digital filter with random parameters on the input of the white noise which is infinitely divisible distributed. Moment functions of first and second order have been analyzed. In particular, the expressions for mathematical expectation, variance and covariance function have been obtained. The results can be utilized to study the probabilistic characteristics of the investigated information stochastic signals, which will depend on the properties of the corresponding kernel and white noise. In particular, the conditions for the process to be wide-sense stationary have been represented.
APA, Harvard, Vancouver, ISO, and other styles
10

Peyrin, F., and R. Prost. "A unified definition for the discrete-time, discrete-frequency, and discrete-time/Frequency Wigner distributions." IEEE Transactions on Acoustics, Speech, and Signal Processing 34, no. 4 (August 1986): 858–67. http://dx.doi.org/10.1109/tassp.1986.1164880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Richard, C. "Time-frequency-based detection using discrete-time discrete-frequency Wigner distributions." IEEE Transactions on Signal Processing 50, no. 9 (September 2002): 2170–76. http://dx.doi.org/10.1109/tsp.2002.801927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Aggoun, L., and L. Benkherouf. "Filtering of discrete-time systems hidden in discrete-time random measures." Mathematical and Computer Modelling 35, no. 3-4 (February 2002): 273–82. http://dx.doi.org/10.1016/s0895-7177(01)00164-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhu, J., L. S. Shieh, and R. E. Yates. "Fitting continuous-time and discrete-time models using discrete-time data and their applications." Applied Mathematical Modelling 9, no. 2 (April 1985): 93–98. http://dx.doi.org/10.1016/0307-904x(85)90119-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Vermunt, Jeroen K., Rolf Langeheine, and Ulf Bockenholt. "Discrete-Time Discrete-State Latent Markov Models with Time-Constant and Time-Varying Covariates." Journal of Educational and Behavioral Statistics 24, no. 2 (June 1999): 179–207. http://dx.doi.org/10.3102/10769986024002179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Vermunt, Jeroen K., Rolf Langeheine, and Ulf Bockenholt. "Discrete-Time Discrete-State Latent Markov Models with Time-Constant and Time-Varying Covariates." Journal of Educational and Behavioral Statistics 24, no. 2 (1999): 179. http://dx.doi.org/10.2307/1165200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jakobsson, A., S. V. Andersen, and S. R. Alty. "Time-updating discrete-time ‘analytic’ signals." Electronics Letters 40, no. 3 (2004): 205. http://dx.doi.org/10.1049/el:20040148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ponomarev, V. A., O. V. Ponomareva, and N. V. Ponomareva. "Discrete Time Inversion and Parametric Discrete Fourier Inversion." Intellekt. Sist. Proizv. 14, no. 4 (January 30, 2017): 25. http://dx.doi.org/10.22213/2410-9304-2016-4-25-31.

Full text
Abstract:
Рассмотрено применение фундаментального понятия инверсии дискретного времени в векторном анализе сигналов, заданных на конечных интервалах. Исследована взаимосвязь параметрического дискретного преобразование Фурье действительной последовательности с параметрическим дискретным преобразованием Фурье соответствующих ей последовательностей с циклической инверсией дискретного времени и с линейной инверсией дискретного времени. Полученные результаты могут быть использованы при рассмотрении как теоретических, так и практических вопросов цифровой обработки сигналов, например при устранении нелинейности фазочастотных характеристик фильтров с импульсной характеристикой бесконечной длины.
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Pei. "Discrete Lorentz symmetry and discrete time translational symmetry." New Journal of Physics 20, no. 2 (February 16, 2018): 023042. http://dx.doi.org/10.1088/1367-2630/aaaa17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jang, Sophia R. J., and Azmy S. Ackleh. "Discrete-time, discrete stage-structured predator–prey models." Journal of Difference Equations and Applications 11, no. 4-5 (April 2005): 399–413. http://dx.doi.org/10.1080/10236190412331335454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mazzola, Claudio. "Can discrete time make continuous space look discrete?" European Journal for Philosophy of Science 4, no. 1 (September 10, 2013): 19–30. http://dx.doi.org/10.1007/s13194-013-0072-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nelatury, S. R., and B. G. Mobasseri. "Synthesis of discrete-time discrete-frequency Wigner distribution." IEEE Signal Processing Letters 10, no. 8 (August 2003): 221–24. http://dx.doi.org/10.1109/lsp.2003.814391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Maltseva, Anastasia, and Volker Reitmann. "Bifurcations of invariant measures in discrete-time parameter dependent cocycles." Mathematica Bohemica 140, no. 2 (2015): 205–13. http://dx.doi.org/10.21136/mb.2015.144326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

de Assis dos Santos Neves, Francisco, Roberto Feliciano Dias Filho, Felipe C. Camboim, Marcelo Cabral Cavalcanti, and Emilio J. Bueno. "Discrete-time Sliding Mode Direct Power Control For Threephase Rectifiers." Eletrônica de Potência 15, no. 2 (May 1, 2010): 77–85. http://dx.doi.org/10.18618/rep.2010.2.077085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gitizadeh, R., I. Yaesh, and J. Z. Ben-Asher. "Discrete-Time Optimal Guidance." Journal of Guidance, Control, and Dynamics 22, no. 1 (January 1999): 171–75. http://dx.doi.org/10.2514/2.7622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Inoue, Rei, and Kazuhiro Hikami. "LatticeWCurrents with Discrete Time." Journal of the Physical Society of Japan 68, no. 2 (February 15, 1999): 386–90. http://dx.doi.org/10.1143/jpsj.68.386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Yao, Norman Y., Chetan Nayak, Leon Balents, and Michael P. Zaletel. "Classical discrete time crystals." Nature Physics 16, no. 4 (February 10, 2020): 438–47. http://dx.doi.org/10.1038/s41567-019-0782-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yin, G. G., and Q. Zhang. "Discrete-Time Markov Chains." IEEE Transactions on Automatic Control 51, no. 6 (June 2006): 1080–81. http://dx.doi.org/10.1109/tac.2006.876962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Fotopoulos, Stergios B. "Discrete-Time Dynamic Models." Technometrics 43, no. 1 (February 2001): 110–11. http://dx.doi.org/10.1198/tech.2001.s567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mitkowski, Wojciech, Waldemar Bauer, and Marta Zagórowska. "Discrete-time feedback stabilization." Archives of Control Sciences 27, no. 2 (June 1, 2017): 309–22. http://dx.doi.org/10.1515/acsc-2017-0020.

Full text
Abstract:
Abstract This paper presents an algorithm for designing dynamic compensator for infinitedimensional systems with bounded input and bounded output operators using finite dimensional approximation. The proposed method was then implemented in order to find the control function for thin rod heating process. The optimal sampling time was found depending on discrete output measurements.
APA, Harvard, Vancouver, ISO, and other styles
30

Bender, Carl M., Kimball A. Milton, David H. Sharp, L. M. Simmons, and Richard Stong. "Discrete-time quantum mechanics." Physical Review D 32, no. 6 (September 15, 1985): 1476–85. http://dx.doi.org/10.1103/physrevd.32.1476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ortigueira, Manuel D., Fernando J. V. Coito, and Juan J. Trujillo. "Discrete-time differential systems." Signal Processing 107 (February 2015): 198–217. http://dx.doi.org/10.1016/j.sigpro.2014.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Doukhan, Paul, Adam Jakubowski, Silvia R. C. Lopes, and Donatas Surgailis. "Discrete-time trawl processes." Stochastic Processes and their Applications 129, no. 4 (April 2019): 1326–48. http://dx.doi.org/10.1016/j.spa.2018.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zagalak, Petr. "Discrete-time control systems." Automatica 33, no. 12 (December 1997): 2281–82. http://dx.doi.org/10.1016/s0005-1098(97)00139-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Verriest, Erik I., and W. Steven Gray. "Discrete Time Nonlinear Balancing." IFAC Proceedings Volumes 34, no. 6 (July 2001): 475–80. http://dx.doi.org/10.1016/s1474-6670(17)35221-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cohen, Daniel, Arie Kaufman, Reuven Bakalash, and Samuel Bergman. "Real time discrete shading." Visual Computer 6, no. 1 (January 1990): 16–27. http://dx.doi.org/10.1007/bf01902626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sanchez, Tonametl, Denis Efimov, Andrey Polyakov, and Jaime A. Moreno. "Homogeneous Discrete-Time Approximation." IFAC-PapersOnLine 52, no. 16 (2019): 19–24. http://dx.doi.org/10.1016/j.ifacol.2019.11.749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Halme, A. "Discrete-time control systems." Automatica 25, no. 5 (September 1989): 788–89. http://dx.doi.org/10.1016/0005-1098(89)90039-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Norton, J. P. "Discrete-time control systems." Chemical Engineering Science 43, no. 5 (1988): 1218. http://dx.doi.org/10.1016/0009-2509(88)85088-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bender, C. M., L. R. Mead, and K. A. Milton. "Discrete time quantum mechanics." Computers & Mathematics with Applications 28, no. 10-12 (November 1994): 279–317. http://dx.doi.org/10.1016/0898-1221(94)00198-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Baeten, J. C. M., and J. A. Bergstra. "Discrete time process algebra." Formal Aspects of Computing 8, no. 2 (March 1996): 188–208. http://dx.doi.org/10.1007/bf01214556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Henley, E. M. "Discrete space-time symmetries." Czechoslovak Journal of Physics 43, no. 3-4 (March 1993): 289–308. http://dx.doi.org/10.1007/bf01589848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Borodin, Alexei, and Ivan Corwin. "Discrete Time q-TASEPs." International Mathematics Research Notices 2015, no. 2 (October 11, 2013): 499–537. http://dx.doi.org/10.1093/imrn/rnt206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wan, Eric A. "Discrete time neural networks." Applied Intelligence 3, no. 1 (February 1993): 91–105. http://dx.doi.org/10.1007/bf00871724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Suris, Yuri B. "Discrete time Toda systems." Journal of Physics A: Mathematical and Theoretical 51, no. 33 (July 5, 2018): 333001. http://dx.doi.org/10.1088/1751-8121/aacbdc.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yassine, H. M. "Exact discrete time synthesis." IEE Proceedings G (Electronic Circuits and Systems) 133, no. 4 (1986): 209. http://dx.doi.org/10.1049/ip-g-1.1986.0034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bou-hamad, Imad, Denis Larocque, Hatem Ben-Ameur, Louise C. Mâsse, Frank Vitaro, and Richard E. Tremblay. "Discrete-time survival trees." Canadian Journal of Statistics 37, no. 1 (March 2009): 17–32. http://dx.doi.org/10.1002/cjs.10007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Weiß, Christian H. "Discrete-Valued Time Series." Entropy 25, no. 12 (November 23, 2023): 1576. http://dx.doi.org/10.3390/e25121576.

Full text
Abstract:
Time series are sequentially observed data in which important information about the phenomenon under consideration is contained not only in the individual observations themselves, but also in the way these observations follow one another [...]
APA, Harvard, Vancouver, ISO, and other styles
48

Bulinskaya, E. V. "Discrete-Time Insurance Models." Moscow University Mathematics Bulletin 78, no. 6 (December 2023): 298–308. http://dx.doi.org/10.3103/s0027132223060025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bouchard, Bruno, and Jean-François Chassagneux. "Discrete-time approximation for continuously and discretely reflected BSDEs." Stochastic Processes and their Applications 118, no. 12 (December 2008): 2269–93. http://dx.doi.org/10.1016/j.spa.2007.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chassagneux, Jean-François. "A discrete-time approximation for doubly reflected BSDEs." Advances in Applied Probability 41, no. 1 (March 2009): 101–30. http://dx.doi.org/10.1239/aap/1240319578.

Full text
Abstract:
We study the discrete-time approximation of doubly reflected backward stochastic differential equations (BSDEs) in a multidimensional setting. As in Ma and Zhang (2005) or Bouchard and Chassagneux (2008), we introduce the discretely reflected counterpart of these equations. We then provide representation formulae which allow us to obtain new regularity results. We also propose an Euler scheme type approximation and give new convergence results for both discretely and continuously reflected BSDEs.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography