Academic literature on the topic 'Discrete-time domain modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Discrete-time domain modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Discrete-time domain modelling"
Kramar, V. "The Mathematical Models of Lattice Functions in Modelling of Control System." Journal of Physics: Conference Series 2096, no. 1 (November 1, 2021): 012149. http://dx.doi.org/10.1088/1742-6596/2096/1/012149.
Full textImbaquingo, Carlos Enrique, Eduard Sarrà, Nicola Isernia, Alberto Tonellotto, Yu-Hsing Chen, Catalin Gabriel Dincan, Philip Kjær, Claus Leth Bak, and Xiongfei Wang. "Harmonic Susceptibility Study of DC Collection Network Based on Frequency Scan and Discrete Time-Domain Modelling Approach." Journal of Electrical and Computer Engineering 2018 (December 16, 2018): 1–25. http://dx.doi.org/10.1155/2018/1328736.
Full textFox, M., and D. Long. "Modelling Mixed Discrete-Continuous Domains for Planning." Journal of Artificial Intelligence Research 27 (October 31, 2006): 235–97. http://dx.doi.org/10.1613/jair.2044.
Full textFelsen, Leopold B. "Modeling in the time domain: Discrete and discreet—a Poem." International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 5, no. 3 (August 1992): 143–44. http://dx.doi.org/10.1002/jnm.1660050303.
Full textXu, Shuning, Lu Tang, and Junhao Yang. "Time-domain modelling and performance research of millimeter-wave all-digital phase-locked loop." Journal of Physics: Conference Series 2245, no. 1 (April 1, 2022): 012018. http://dx.doi.org/10.1088/1742-6596/2245/1/012018.
Full textSun, Min, and Jing Liu. "General Six-Step Discrete-Time Zhang Neural Network for Time-Varying Tensor Absolute Value Equations." Discrete Dynamics in Nature and Society 2019 (December 29, 2019): 1–12. http://dx.doi.org/10.1155/2019/4861912.
Full textLi, Yanpeng, Yaolin Jiang, and Ping Yang. "Time domain model order reduction of discrete-time bilinear systems with Charlier polynomials." Mathematics and Computers in Simulation 190 (December 2021): 905–20. http://dx.doi.org/10.1016/j.matcom.2021.06.021.
Full textPatchamatla, J. Rama Raju, and P. K. Emani. "Time Domain Implementation of Transmitting Boundaries in ABAQUS for Discrete Soil-structure Interaction Systems." International Journal of Mathematical, Engineering and Management Sciences 5, no. 3 (June 1, 2020): 447–62. http://dx.doi.org/10.33889/ijmems.2020.5.3.037.
Full textChen, Yu-Hsing, Catalin Gabriel Dincan, Philip Kjær, Claus Leth Bak, Xiongfei Wang, Carlos Enrique Imbaquingo, Eduard Sarrà, Nicola Isernia, and Alberto Tonellotto. "Model-Based Control Design of Series Resonant Converter Based on the Discrete Time Domain Modelling Approach for DC Wind Turbine." Journal of Renewable Energy 2018 (December 2, 2018): 1–18. http://dx.doi.org/10.1155/2018/7898679.
Full textCialenco, Igor, and Yicong Huang. "A note on parameter estimation for discretely sampled SPDEs." Stochastics and Dynamics 20, no. 03 (August 27, 2019): 2050016. http://dx.doi.org/10.1142/s0219493720500161.
Full textDissertations / Theses on the topic "Discrete-time domain modelling"
Vegh, Viktor. "Numerical modelling of industrial microwave heating." Thesis, Queensland University of Technology, 2003. https://eprints.qut.edu.au/37144/7/37144_Digitised%20Thesis.pdf.
Full textKemp, Pieter Stephanus. "The design of an analogue class-D audio amplifier using Z-domain methods." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20084.
Full textENGLISH ABSTRACT: The class-D audio power amplifier has found widespread use in both the consumer and professional audio industry for one reason: efficiency. A higher efficiency leads to a smaller and cheaper design, and in the case of mobile devices, a longer battery life. Unfortunately, the basic class-D amplifier has some serious drawbacks. These include high distortion levels, a load dependent frequency response and the potential to radiate EMI. Except for EMI, the aforementioned issues can be mitigated by the proper implementation of global negative feedback. Negative feedback also has the potential to indirectly reduce EMI, since the timing requirements of the output devices can be relaxed. This thesis discusses the design of a clocked analogue controlled pulse-width modulated class-D audio amplifier with global negative feedback. The analogue control loop is converted to the z-domain by modelling the PWM comparator as a sampling operation. A method is implemented that improves clip recovery and ensures stability during over-modulation. Loop gain is shaped to provide a high gain across the audio band, and ripple compensation is implemented to minimize the negative effect of ripple feedback. Experimental results are presented.
AFRIKAANSE OPSOMMING: Die klas-D klankversterker geniet wydverspreide gebruik in beide die verbruiker en professionele oudio industrie vir een rede: benuttingsgraad. ’n Hoër benuttingsgraad lei tot ’n kleiner en goedkoper ontwerp, en in die geval van draagbare toestelle, tot langer batterylewe. Ongelukkig het die basiese klas-D klankversterker ernstige tekortkominge, naamlik hoë distorsievlakke, ’n lasafhanklike frekwensierespons en die vermoë om EMI te genereer. Behalwe vir EMI kan hierdie kwessies deur die korrekte toepassing van globale negatiewe terugvoer aangespreek word. Negatiewe terugvoer het ook die potensiaal om EMI indirek te verminder, aangesien die tydvereistes van die skakel stadium verlaag kan word. Hierdie tesis bespreek die ontwerp van ’n geklokte analoog-beheerde pulswydte-modulerende klas-D klankversterker met globale negatiewe terugvoer. Die analoogbeheerlus word omgeskakel na die z-vlak deur die PWM vlakvergelyker as ’n monster operasie te modelleer. ’n Metode word geïmplementeer wat die stabiliteit van die lus verseker tydens oormodulasie. Die lusaanwins word gevorm om ’n hoë aanwins in die oudioband te verseker en riffelkompensasie word geïmplementeer om die negatiewe effek van terugvoerriffel teen te werk. Eksperimentele resultate word voorgelê.
Upamanyu, Kapil. "Modelling, Stabilization Methods and Power Amplification for Power Hardware-in-Loop Simulation with Improved Accuracy." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6112.
Full textDST, MHRD
Book chapters on the topic "Discrete-time domain modelling"
Korte, Johannes, Till Schubert, Jan Martin Brockmann, and Wolf-Dieter Schuh. "On the Estimation of Time Varying AR Processes." In International Association of Geodesy Symposia. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/1345_2023_188.
Full textMarks II, Robert J. "Mathematical Morphology and Fourier Analysis on Time Scales." In Handbook of Fourier Analysis & Its Applications. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780195335927.003.0017.
Full textConference papers on the topic "Discrete-time domain modelling"
Farsi, M., and K. Warwick. "Reduced Order Modelling in the Discrete-Time Domain." In 1986 American Control Conference. IEEE, 1986. http://dx.doi.org/10.23919/acc.1986.4788959.
Full textCorreia, Carlos, Caroline Kulcsár, Jean-Marc Conan, and Henri-François Raynaud. "Hartmann modelling in the discrete spatial-frequency domain: application to real-time reconstruction in adaptive optics." In SPIE Astronomical Telescopes + Instrumentation, edited by Norbert Hubin, Claire E. Max, and Peter L. Wizinowich. SPIE, 2008. http://dx.doi.org/10.1117/12.788455.
Full textJunge, Laura, Christian Frey, Graham Ashcroft, and Edmund Kügeler. "A New Harmonic Balance Approach Using Multidimensional Time." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-16224.
Full textMartin, Tobias, Gang Wang, and Hans Bihs. "Numerical Modelling of the Interaction of Moving Fish Nets and Fluid." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18605.
Full textJunge, Laura, Graham Ashcroft, Hans-Peter Kersken, and Christian Frey. "On the Development of Harmonic Balance Methods for Multiple Fundamental Frequencies." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75495.
Full textSnowsill, G. D., and C. Young. "The Application of CFD to Underpin the Design of Gas Turbine Pre-Swirl Systems." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90443.
Full textCai, Jian-Cheng, Jia-Qi Zhang, and Can Yang. "Numerical Study of the Unsteady Flow Inside a Centrifugal Fan and its Downstream Pipe Using Detached Eddy Simulation." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24544.
Full text