Dissertations / Theses on the topic 'Discrete power switching devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 49 dissertations / theses for your research on the topic 'Discrete power switching devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Chin, Shaoan. "MOS-bipolar composite power switching devices." Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/54275.
Full textPh. D.
Wang, Jue. "Silicon carbide power devices." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/579.
Full textSmecher, Graeme. "Discrete-time crossing-point estimation for switching power converters." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115995.
Full textFor example, an audio amplifier typically receives its input from a digital source decoded into regular samples (e.g. from MP3, DVD, or CD audio), or obtained from a continuous-time signal using an analog-to-digital converter (ADC). In a switching amplifier based on Pulse-Width Modulation (PWM) or Click Modulation (CM), a signal derived from the sampled audio is compared against a deterministic reference waveform; the crossing points of these signals control a switching power stage. Crossing-point estimates must be accurate in order to preserve audio quality. They must also be simple to calculate, in order to minimize processing requirements and delays.
We consider estimating the crossing points of a known function and a Gaussian random process, given uniformly-spaced, noisy samples of the random process for which the second-order statistics are assumed to be known. We derive the Maximum A-Posteriori (MAP) estimator, along with a Minimum Mean-Squared Error (MMSE) estimator which we show to be a computationally efficient approximation to the MAP estimator.
We also derive the Cramer-Rao bound (CRB) on estimator variance for the problem, which allows practical estimators to be evaluated against a best-case performance limit. We investigate several comparison estimators chosen from the literature. The structure of the MMSE estimator and comparison estimators is shown to be very similar, making the difference in computational expense between each technique largely dependent on the cost of evaluating various (generally non-linear) functions.
Simulations for both Pulse-Width and Click Modulation scenarios show the MMSE estimator performs very near to the Cramer-Rao bound and outperforms the alternative estimators selected from the literature.
Witcher, Joseph Brandon. "Methodology for Switching Characterization of Power Devices and Modules." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/31205.
Full textMaster of Science
Kim, Alexander. "Switching-Loss Measurement of Current and Advanced Switching Devices for Medium-Power Systems." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/34568.
Full textMaster of Science
Finney, Stephen Jon. "The reduction of switching losses in power semiconductor devices." Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1345.
Full textFinney, Adrian David. "Physical constraints on the switching speeds of power transistors." Thesis, Lancaster University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306126.
Full textChen, Cheng. "Studies of SiC power devices potential in power electronics for avionic applications." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN045.
Full textMy PhD work in laboratories SATIE of ENS de Cachan and Ampère of INSA de Lyon is a part of project GEstioN OptiMisée de l’Energie (GENOME) to investigate the potential of some Silicon carbide (SiC) power devices (JFET, MOSFET and BJT) in power electronic converters dedicated to aeronautical applications for the development of more electric aircraft.The first part of my work investigates the robustness of MOSFET and SiC BJT subjected to short circuit. For SiC MOSFETs, under repetition of short-term short circuit, a gate leakage current seems to be an indicator of aging. We define repetitive critical energy to evaluate the robustness for repetition of short circuit. The effect of room temperature on the robustness of SiC MOSFET and BJT under short circuit stress is not evident. The capability of short circuit is not improved by reducing gate leakage current for MOSFET, while BJT shows a better robustness by limiting base current. For MSOFET, a significant increase in gate leakage current accelerates failure for DC voltage from 600V to 750V. After opening Rohm MOSFETs with a short circuit between gate and source after failure, the fusion of metallization is considered as the raison of failure. In this particular mode of failure, the short circuit between gate and source self-protects the chip and opens drain short current.The second part of the thesis is devoted to the study of SiC JFET, MSOFET and BJT in avalanche mode. The SemiSouth JFET and Fairchild BJT exhibit excellent robustness in the avalanche. On the contrary, the avalanche test reveals the fragility of Rohm MOSFET since it failed before entering avalanche mode. The failure of Rohm MOSFET and its low robustness in avalanche mode are related to the activation of parasitic bipolar transistor. The avalanche current is a very small part of the current in the inductor. It flows from the drain/collector to the gate/base to drive the transistor in linear mode. A high-value gate resistance effectively reduces the avalanche current through the drain-gate junction to the JFET.The third part of this thesis concerns the study of switching performance of SiC BJT at high switching frequency. We initially attempted to validate the switching loss measurements. After checking the accuracy of the electrical measurement compared to calorimetric measurement, electrical measurement is adopted for switching power losses but requires a lot of attention. Thanks to high carrier charge mobility of SiC material, SiC BJT does not require the use of anti-saturation diode. Finally, no significant variation in switching losses is observed over an ambient temperature range from 25°C to 200°C.The fourth part focuses on the study of SiC MOSFET behavior under HTB (High Temperature Reverse Bias) and in diode-less application in which the transistors conduct a reverse current through the channel, except for the dead time during which the body diode ensure the continuity of the current in the load. The results show that the body diode has no significant degradation when the reverse conduction of the MOSFET. Cree MOSFET under test shows a drift of the threshold voltage and a degradation of the gate oxide which are more significant during the tests in the diode-less application than under HTRB test. The drift of the threshold voltage is probably due to intense electric field in the oxide and the charge traps in the gate oxide
Chen, Wei. "Fast switching low power loss devices for high voltage integrated circuits." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262863.
Full textSukumaran, Deepti. "Design and Fabrication of Optically Activated Silicon Carbide High-Power Switching Devices." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1007158711.
Full textMurillo, Carrasco Luis. "Modelling, characterisation and application of GaN switching devices." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/modelling-characterisation-and-application-of-gan-switching-devices(a227368d-1029-4005-950c-2a098a5c5633).html.
Full textKozak, Joseph Peter. "Hard Switched Robustness of Wide Bandgap Power Semiconductor Devices." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/104874.
Full textDoctor of Philosophy
Power conversion technology is being integrated into industrial and commercial applications with the increased use of laptops, server centers, electric vehicles, and solar and wind energy generation. Each of these converters requires the power semiconductor devices to convert energy reliably and safely. textcolor{black}{Silicon has been the primary material for these devices; however,} new devices have been commercialized from both silicon carbide (SiC) and gallium nitride (GaN) materials. Although these devices are required to undergo qualification testing, the standards were developed for silicon technology. The performance of these new devices offers many additional benefits such as physically smaller dimensions, greater power conversion efficiency, and higher thermal operating capabilities. To facilitate the increased integration of these devices into industrial applications, greater robustness and reliability analyses are required to supplement the traditional tests. The work presented here provides two new experimental methodologies to test the robustness of both SiC and GaN power transistors. These methodologies are oriented around hard-switching environments where both high voltage biases and high conduction current exist and stress the intrinsic semiconductor properties. Experimental evaluations were conducted of both material technologies where the electrical properties were monitored over time to identify any degradation effects. Additional analyses were conducted to determine the physics-oriented failure mechanisms. This work provides insight into the limitations of these semiconductor devices for both device designers and manufacturers as well as power electronic system designers.
Chen, Zheng. "Electrical Integration of SiC Power Devices for High-Power-Density Applications." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/23923.
Full textPh. D.
Zhao, Xiaonan. "High-Efficiency and High-Power Density DC-DC Power Conversion Using Wide Bandgap Devices for Modular Photovoltaic Applications." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/89025.
Full textDoctor of Philosophy
Solar energy is one of the most promising renewable energies to replace the conventional fossils. Power electronics converters are necessary to transfer power from solar panels to dc or ac grid. Since the output of solar panel is low voltage with a wide range and the grid side is high voltage, this power converter should meet the basic requirements of high step up and wide range regulation. Additionally, high power conversion efficiency is an important design purpose in order to save energy. The existing solutions have limitations of narrow regulating range, low efficiency or complicated circuit structure. Recently, the third-generation power semiconductors attract more and more attentions who can help to reduce the power loss. They are named as wide band gap devices. This dissertation proposed a wide band gap devices based power converter with ability of wide regulating range, high power conversion efficiency and simple circuit structure. Moreover, this proposed converter is further designed for high power density, which reduces more than 70% of volume. In this way, small power converter can merge into the junction box of solar panel, which can reduce cost and be convenient for installations.
Feng, Junjie. "6.78MHz Omnidirectional Wireless Power Transfer System for Portable Devices Application." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/101839.
Full textDoctor of Philosophy
Wireless power transfer (WPT) is a promising solution to deliver power to a battery in a variety of applications. Due to its convenience, wireless power transfer technology with loosely coupled coils has become popular in consumer electronics. In such system, the receiving coil embedded in the receiving device picks up magnetic field induced by the transmitter coil; therefore, energy is transferred through the magnetic field and contactless charging is achieved. Thus far, the majority of the coupled coils in these systems are planar structure, and the magnetic field induced by the transmitter coil is in one direction, meaning that the energy power transfer capability degrades greatly when there is some angle misalignment between the coupled coils. To improve the charging flexibility, a three–dimensional (3D) coils structure is proposed to transfer energy in different directions, also known as in omnidirectional manner. With omnidirectional magnetic field, the charging platform can provide energy transfer in any direction; therefore, the angle alignment between the transmitter coil and receiver coil is no longer needed. In a WPT system with loosely coupled coils, the energy transfer capability suffers from weak coupling condition. To improve the power transfer capability, the electrical resonance concept between the inductor and capacitor at the power transfer frequency is adopted. A novel compensation network is proposed to form a resonant tank with the loosely coupled coils and maximize the power transfer at the operating frequency. As for the WPT system with loosely coupled coils, the energy transfer capability is also proportional to the operating frequency. Therefore, Megahertz (MHz) WPT systems are used to improve the charging spatial freedom. 6.78 MHz is selected as the system operation in AirFuel standard, a wireless charging standard for commercial electronics. The zero voltage switching (ZVS) operation of the switching devices is essential in reducing the switching loss and the switching related electromagnetic interference (EMI) issue in a MHz system; therefore, a comprehensive evaluation of ZVS condition in an omnidirectional WPT system is performed. The big hurdle of the WPT technology is the safety concern related to human exposure of electromagnetic fields (EMF). Therefore, a double layer shield structure is first applied in a three dimensional charging setup to confine the electromagnetic fields effectively. The stray field level in our charging platform is well below the safety level required by the regulation agent. Although the energy can be transferred in an omnidirectional manner in the proposed charging platform, the energy should be directed to the target loads to avoid unnecessary energy waste. Therefore, a smart detection method is proposed to detect the receiver coil's orientation and focus the energy transfer to certain direction preferred by the receiver in the setup. The energy beaming strategy greatly improves the charging speed of the charging setup.
Liu, Zhengyang. "Characterization and Application of Wide-Band-Gap Devices for High Frequency Power Conversion." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77959.
Full textPh. D.
Chaing, Chia-Tsung. "Five-level inverter employing WRPWM switching scheme." Diss., University of Pretoria, 2005. http://upetd.up.ac.za/thesis/available/etd-07102008-081413/.
Full textSmith, Brady Christopher. "MSM photodiode as the switching element in a photoswitch-based class E microwave power amplifier." Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5672.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 14, 2009) Includes bibliographical references.
Tsai, Kaichien. "EMI Modeling and Characterization for Ultra-Fast Switching Power Circuit Based on SiC and GaN Devices." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385983252.
Full textPerrin, Rémi. "Characterization and design of high-switching speed capability of GaN power devices in a 3-phase inverter." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI001/document.
Full textThe french industrial project MEGaN targets the development of power module based on GaN HEMT transistors. One of the industrial applications is the aeronautics field with a high-constraint on the galvanic isolation (>100 kV/s) and ambient temperature (200°C). The intent of this work is the power module block (3 phases inverter 650 V 30 A). The goal is to obtain a small footprint module, 30 cm2, with necessary functions such as gate driver, gate driver power supply, bulk capacitor and current phase sensor. This goal implies high efficiency as well as respect of the constraint of galvanic isolation with an optimized volume. This dissertation, besides the state of the art of power modules and especially the GaN HEMT ones, addressed a control signal isolation solution based on coreless transformers. Different prototypes based on coreless transformers were characterized and verified over 3000 hours in order to evaluate their robustness. The different studies realized the characterization of the different market available GaN HEMTs in order to mature a circuit simulation model for various converter topologies. In the collaborative work of the project, our contribution did not focus on the gate driver chip design even if experimental evaluation work was made, but a gate driver power supply strategy. The first gate driver isolated power supply design proposition focused on the low-voltage GaN HEMT conversion. The active-clamp Flyback topology allows to have the best trade-off between the GaN transistors and the isolation constraint of the transformer. Different transformer topolgies were experimentally performed and a novel PCB embedded transformer process was proposed with high-temperature capability. A lamination process was proposed for its cost-efficiency and for the reliability of the prototype (1000 H cycling test between - 55; + 200°C), with 88 % intrinsic efficiency. However, the transformer isolation capacitance was drastically reduced compared to the previous prototypes. 2 high-integrated gate driver power supply prototypes were designed with: GaN transistors (2.4 MHz, 2 W, 74 %, 6 cm2), and with a CMOS SOI dedicated chip (1.2 MHz, 2 W, 77 %, 8.5 cm2). In the last chapter, this dissertation presents an easily integrated solution for a phase current sensor based on the magnetoresistance component. The comparison between shunt resistor and magnetoresistance is experimentally performed. Finally, two inverter prototypes are presented, with one multi-level gate driver dedicated for GaN HEMT showing small switching loss performance
Kasala, Sinduri. "Value of Fast Switching Devices to Electric Distribution Networks : An Approach to Reduce Voltage Sags and Interruptions in Distribution Networks." Thesis, KTH, Elektroteknisk teori och konstruktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160543.
Full textSampath, Vimal G. "ULTRA–LOW POWER STRAINTRONIC NANOMAGNETIC COMPUTING WITH SAW WAVES: AN EXPERIMENTAL STUDY OF SAW INDUCED MAGNETIZATION SWITCHING AND PROPERTIES OF MAGNETIC NANOSTRUCTURES." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4617.
Full textNel, Rick Guillaume. "Discrete element modelling of packed rock beds for thermal storage applications." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80147.
Full textENGLISH ABSTRACT: The increased necessity to obtain power from other sources than conventional fossil fuels has led to the growing interest in solar power. The problem with the proposed technology is that it can only provide power during the day and therefore requires some sort of storage system, if power is to be supplied throughout the day and night. A number of storage systems exist, but the one of particular interest for this research, is packed rock beds. Rock beds have the advantage that if designed right, they have the potential to be one of the most cost effective means of storing thermal energy for solar power plants. Discrete Element Models (DEM) of rock beds were therefore developed through both experimental and numerical procedures, by conducting a series of sensitivity, calibration and verification studies. The developed models were then used to study various aspects associated with rock beds, which were either too impractical, impossible or too expensive to conduct through actual experimental work. This research focused specifically on the potential of constructing self-supporting tunnels within the rock beds in order to improve the air flow uniformity through the bed, while minimizing the pressure drop. It was observed that if the appropriate steps were followed, stable self-supporting tunnels could be formed. Valuable information such as the rock orientations resulting from different packing directions could also be derived from the models and finally, a method to convert the DEM models into the appropriate format such that it could be imported into a CFD preprocessor for future CFD studies, was developed.
AFRIKAANSE OPSOMMING: Die verhoogde noodsaaklikheid om energie te verkry uit ander bronne as konvensionele fossielbrandstowwe, het gelei tot die groeiende belangstelling in sonkrag energie. Die probleem met die voorgestelde tegnologie is dat dit net energie gedurende die dag kan voorsien en dus word daar ’n stoorstelsel benodig indien energie deur beide die dag en nag voorsien moet word. Tans bestaan daar wel ’n aantal van hierdie stoorstelsels, maar die een wat van besondere belang is in hierdie navorsing, is verpakte klip beddens. Klip beddens het die voordeel dat, indien dit reg ontwerp is, dit oor die potensiaal beskik om een van die mees koste-doeltreffende middels te wees vir die stoor van termiese energie vir sonkragstasies. Diskreet Element Modelle (DEM) van die klip beddens is ontwikkel deur gebruik te maak van beide experimentele en numeriese metodes waartydens ’n reeks sensitiwiteits-, kalibrasie- en verifiëring studies uitgevoer is. Die ontwikkelde modelle is gebruik om verskeie aspekte van klip beddens te ondersoek, wat of te onprakties, onmoontlik of te duur is vanuit ’n eksperimentele oogpunt. Hierdie navorsing het spesifiek gefokus op die potensiaal om self-ondersteunende tonnels binne in die klip beddens te vorm, ten einde die egaligheid van die lugvloei deur die bed te verbeter, terwyl die drukval geminimeer word. Daar is waargeneem dat stabiele self-ondersteunende tonnels wel gevorm kon word indien die toepaslike stappe gevolg is. Waardevolle inligting soos die klip oriëntasies wat as gevolg van die verskillende verpakkings rigtings onstaan kon ook vanuit die model verkry word. Ten slotte is ’n metode ontwikkel om die DEM modelle na die toepaslike formaat te omskep sodat dit ten einde gebruik kan word in numeriese vloeidinamika studies.
Koné, Sodjan. "Développement de briques technologiques pour la réalisation des composants de puissance en diamant monocristallin." Thesis, Toulouse, INPT, 2011. http://www.theses.fr/2011INPT0048/document.
Full textAs applications in the field of power electronics tend toward more extreme conditions (high power density, high frequency, high temperature ...), evolution of electric power treatment systems comes up against physical limits of silicon, the main semiconductor material used in electronic industry for over 50 years. A new approach based on the use of wide bandgap semiconductor materials will permit to overcome those limits. Among these materials, diamond is a very attractive material for power electronics switch devices due to its exceptional properties: high electric breakdown field, high carriers mobilities, exceptional thermal conductivity, high temperature operating possibility... However, the use of diamond as an electronic material is still very problematic due to the difficulty in the synthesis of high electronic grade CVD diamond and to find suitable dopants (in particular donors) in diamond. Besides, some of the unique properties of diamond, such as its extreme hardness and chemical inertness that make it an attractive material also cause difficulties in its application. Nevertheless, recent progress in the field of chemical vapor deposition (CVD) synthesis of diamond allow the study of the technological steps (RIE etching, ohmic and Schottky contacts, passivation,...) necessary for future diamond power devices processing. This is the aim of this thesis. In a first section, the uniqueness of diamond, the promise it bears as a potential material for specific electronic devices and the difficulties related to its application were reviewed. Then, the different technological steps required for power switching devices processing were studied: RIE etching, Ohmic and Schottky contacts. Finally, these works were illustrated by carrying out and electrical characterizations of Schottky Barrier Diodes. The achieved results allow us to make a summary of scientific and technological locks that remain for an industrial exploitation of diamond in power electronic switch devices field
Filho, Herminio Miguel de Oliveira. "Soft switching bidirectional isolated three-phase DC-DC converter using dual phase-shift control with variable duty cycle." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16346.
Full textThis work presents the analysis, design example, simulations and experimental results on a soft-switching bidirectional isolated three-phase dc-dc converter using dual phase-shift control with variable duty cycle. The topology uses three single H-bridges in the primary side and a three-phase inverter in the secondary side. High-frequency isolation is ensured by using three single-phase transformers connected in open delta-wye configuration. The variation of both phase-shift (PS) angles between the H-bridge legs and/or primary and secondary sides allows controlling the power flow, while reduced reactive power flow is possible. The variable duty cycle is used to ensure a constant voltage bus and/or zero voltage switching (ZVS) operation. A detailed analysis is presented considering a model based on the fundamental components for the voltages and currents in the transformer and, aiming its validation, a second analysis from the operation stages of the converter has also been developed. Besides, the dynamic model of the converter, based on fundamental components and employing the gyrator theory has been developed. A design example with nominal values assumptions, stresses and specifications for components, discrete control system characterization and its FPGA programming are presented. Simulation and experimental results in steady state and closed-loop performance are presented and discussed to validate the proposed approach.
Este trabalho apresenta a anÃlise, exemplo de projeto, simulaÃÃes e resultados experimentais de um conversor CC-CC trifÃsico isolado bidirecional com comutaÃÃo suave, dual phase shift (DPS) e razÃo cÃclica variÃvel. A topologia utiliza trÃs pontes H monofÃsicas no lado primÃrio e um inversor trifÃsico no lado secundÃrio. A isolaÃÃo em alta frequÃncia à garantida utilizando-se trÃs transformadores monofÃsicos conectados em uma configuraÃÃo delta aberto/estrela. A variaÃÃo de ambos os Ãngulos de deslocamento de fase, entre os braÃos de uma ponte H e/ou entre os lados primÃrio e secundÃrio, permitem o controle do fluxo de potÃncia. Esta flexibilidade garante a obtenÃÃo de um baixo conteÃdo reativo na anÃlise de projeto da topologia. A razÃo cÃclica variÃvel à utilizada para assegurar um barramento constante e uma operaÃÃo dos interruptores com comutaÃÃo suave. Uma anÃlise matemÃtica da estrutura à apresentada considerando um modelo baseado em componentes fundamentais e, com o propÃsito de comprovar a validade deste modelo, uma segunda anÃlise a partir das etapas de operaÃÃo do conversor tambÃm foi desenvolvida. O modelo dinÃmico do conversor, baseado nas componentes fundamentais, tambÃm foi concebido com auxÃlio da teoria do gyrator. Um exemplo de projeto, com a obtenÃÃo de valores nominais, esforÃos e especificaÃÃes dos componentes, caracterizaÃÃo do sistema de controle discreto e sua programaÃÃo atravÃs de FPGA sÃo desenvolvidos. SimulaÃÃes e resultados experimentais do conversor operando em regime permanente e dinÃmico sÃo apresentados para validar o modelo proposto.
Le, Lesle Johan. "Design modeling and evaluation of a bidirectional highly integrated AC/DC converter." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC009/document.
Full textNowadays, the green energy sources are replacing fossil energies. To assure proper interconnections between all these different electrical facilities, power electronics is mandatory. The main requirements of next generation converters are high efficiency, high power density, high reliability and low-cost. The Printed Circuit Board (PCB) integration of dies and/or passives is foreseen as a promising, low-cost and efficient approach. The manufacturing time and cost of power converters can be drastically reduced. Moreover, integration allows the converter performances to be improved. For this purpose, an original 3D folded power inductor concept using PCB technology is introduced. It is low cost for mass production and presents good reproducibility. A partial milling of the PCB is used to allow bending and building the inductor winding. Prototypes are designed through an optimisation procedure. Electrical and thermal tests are performed to validate the applicability in power converters. The development of an optimisation procedure for highly integrated converters, using PCB embedding, is presented. All important choices, facilitating the PCB integration, e.g. reduction of passive components, are presented. It includes the selection of the suitable converter topology with the associated modulation. The design procedure and implemented analytical models are introduced. It results in four interleaved full-bridges operating with low (50 Hz) and high (180 kHz) frequency legs. The configuration allows high current ripple in the input inductors inducing zero voltage switching (ZVS) for all the semiconductors, and for a complete grid period. The impact of high current ripple on the EMI filter is compensated by the interleaving. Two prototypes of a 3.3 kW bidirectional AC/DC converters are presented, theoretical and practical results are discussed. To further increase the power density of the overall system, a Buck power pulsating buffer is investigated. The optimisation procedure is derived from the procedure implemented for the AC/DC converter. The result favours an original approach, where the converter also operates with ZVS along the entire main period at a fixed switching frequency. The selected technologies for prototyping are integration friendly as ceramic capacitors and PCB based inductors are implemented in the final prototype
D'Souza, Noel. "APPLICATIONS OF 4-STATE NANOMAGNETIC LOGIC USING MULTIFERROIC NANOMAGNETS POSSESSING BIAXIAL MAGNETOCRYSTALLINE ANISOTROPY AND EXPERIMENTS ON 2-STATE MULTIFERROIC NANOMAGNETIC LOGIC." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3539.
Full textCasarin, Jérémy. "Caractérisation et mise en œuvre de composants SiC Haute Tension pour l'application transformateur moyenne fréquence en traction ferroviaire." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0123/document.
Full textThe objective of the CONCIGI-HT project (Compact AC/DC converter with Integrated High Voltage Galvanic Insulation) is to increase the efficiency of traction drives while reducing the mass and volume of the AC/DC conversion. To do that, the part low-frequency transformer - rectifier is replaced by a multi-converter topology, directly connected to the high voltage power supply and incorporating medium frequency transformers (several kHz). This thesis relates more particularly to the characterization and implementation of high voltage semiconductors in conversion topologies with intermediate medium frequency link. The study is performed on the basis of a traction drive of 2 MW operating on a 25 kV/50 Hz power supply. The first chapter presents the state of the art of the Automotrice à Grande Vitesse (AGV) recently produced by ALSTOM. The traction drive of this vehicle is used as a reference for the study of new topologies with medium frequency transformer. The second chapter first describes the structure of a conventional traction drive and then presents two multicellular topologies with medium frequency transformer applicable to railway traction (the indirect structure with PWM rectifier and DC/DC resonant converter and the direct topology combining dual converters). The advantages and disadvantages of these topologies are highlighted. The third chapter deals with the implementation and soft switching characterization of 6.5 kV Silicon components in both topologies presented above. Two test benches, representing a basic conversion stage, as well as specific drivers dedicated to the soft switching, has been made. They allow the study of semiconductors in nominal operating conditions (3.6 kV / 100 A). The fourth chapter presents the implementation and characterization of silicon carbide components (SiC). For this, power modules based on 10 kV chips (MOSFET and Diodes) have been achieved. The experimental results obtained on test benches made in the previous chapter, show a significant reduction in losses and demonstrate the viability of the dual converter topology for a 25 kV/50 Hz application. The conclusion presents the first design of an elementary block and gains in mass and volume as well as the energy savings that can be achieved compared to a conventional structure
Пархуць, Андрій Романович, and Andriі Parkhuts. "Перехідні процеси в електричних колах із світлодіодами." Master's thesis, Тернопільський національний технічний університет імені Івана Пулюя, кафедра електричної інженерії,Тернопіль, Україна, 2020. http://elartu.tntu.edu.ua/handle/lib/33479.
Full textМетою кваліфікаційної роботи було дослідити перехідні процесів, що відбуваються при живленні світлодіодів імпульсним струмом, і їх впливу на світлотехнічні і електротехнічні характеристики. Розроблено методику обробки результатів на початковій стадії кінетичних досліджень, що передбачає виявлення характеру загасання світіння (релаксації поглинання), яке може бути обумовлено молекулярними реакціями і описується кінетикою першого і другого порядку. Розроблено методику та змонтовано установку для вимірювання енергетичних характеристик напівпровідникових джерел світла при імпульсному живленні.
The purpose of the qualification work was to investigate transients that occur when powering LEDs with pulsed current, and their impact on lighting and electrical characteristics. A method for processing the results at the initial stage of kinetic research has been developed, which involves identifying the nature of luminescence attenuation (absorption absorption), which may be due to molecular reactions and is described by first- and second-order kinetics. A method has been developed and an installation for measuring the energy characteristics of semiconductor light sources at pulsed power supply has been installed.
ЗМІСТ ВСТУП 6 1 АНАЛІТИЧНИЙ РОЗДІЛ 8 1.1 Структура і принцип робота світлодіода 8 1.2. Будови блоків живлення для світлодіодів 11 1.2.1. Лінійні блоки живлення світлодіодів 11 1.2.2 Імпульсні блоки живлення світлодіодів 12 1.3. Способи підвищення ефективності світлодіодного драйвера 14 1.4. Висновки до розділу 18 2 ПРОЕКТНО-КОНСТРУКТОРСЬКИЙ РОЗДІЛ 19 2.1. Кінетика та спектральний аналіз результатів імпульсних вимірів 19 2.2. Розкладання кінетичних кривих у світлодіодах 22 2.3. Кінетика реакцій у світлодіодах 28 2.3.1. Швидкість реакції у світлодіодах 28 2.3.2. Реакція нульового порядку 29 2.3.3. Реакція першого порядку 30 2.3.4. Реакція другого порядку 31 2.4. Експериментальної установки для проведення світлотехнічних і електротехнічних вимірювань 32 2.5. Висновки до розділу 35 3 НАУКОВО-ДОСЛІДНИЦЬКИЙ РОЗДІЛ 36 3.1. Електричні характеристики світлодіодного кола при імпульсному живленні 36 3.2. Світлотехнічні характеристики світлодіодного кола при імпульсному живленні 45 3.3. Висновки до розділу 51 4 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 53 4.1. ОХОРОНА ПРАЦІ 53 4.1.1. Організація охорони праці на підприємстві 53 5 4.1.2. Вимоги до виробничого освітлення та його нормування 55 4.1.3. Штучне освітлення виробничих приміщень, його нормування та види 56 4.1.4. Вплив кольору на покращення умов праці та підвищення продуктивності виробництва 57 4.2. БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 61 4.2.1. Причини електротравматизму. Вплив електричного струму на організм людини 61 4.2.2. Стійкість роботи об’єкту енергетики і фактори, що на них впливають 65 ЗАГАЛЬНІ ВИСНОВКИ 67 ПЕРЕЛІК ПОСИЛАНЬ 68
Senturk, Osman Selcuk. "Series Active Filter Design, Control, And Implementation With A Novel Load Voltage Harmonic Extraction Method." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608819/index.pdf.
Full textMallangi, Siva Sai Reddy. "Low-Power Policies Based on DVFS for the MUSEIC v2 System-on-Chip." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229443.
Full textNuförtiden så har multifunktionella bärbara hälsoenheter fått en betydande roll. Dessa enheter drivs vanligtvis av batterier och är därför begränsade av batteritiden (från ett par timmar till ett par veckor beroende på tillämpningen). På senaste tiden har det framkommit att dessa enheter som används vid en fast spänning och frekvens kan användas vid flera spänningar och frekvenser. Genom att byta till lägre spänning och frekvens på grund av effektbehov så kan enheterna få enorma fördelar när det kommer till energibesparing. Dynamisk skalning av spänning och frekvens-tekniker (såkallad Dynamic Voltage and Frequency Scaling, DVFS) har visat sig vara användbara i detta sammanhang för en effektiv avvägning mellan energi och beteende. Hos Imec så använder sig bärbara enheter av den internt utvecklade MUSEIC v2 (Multi Sensor Integrated circuit version 2.0). Systemet är optimerat för effektiv och korrekt insamling, bearbetning och överföring av data från flera (hälso) sensorer. MUSEIC v2 har begränsad möjlighet att styra spänningen och frekvensen dynamiskt. I detta examensarbete undersöker vi hur traditionella DVFS-tekniker kan appliceras på MUSEIC v2. Experiment utfördes för att ta reda på de optimala effektlägena och för att effektivt kunna styra och även skala upp matningsspänningen och frekvensen. Eftersom att ”overhead” skapades vid växling av spänning och frekvens gjordes också en övergångsanalys. Realtidsoch icke-realtidskalkyler genomfördes baserat på dessa tekniker och resultaten sammanställdes och analyserades. I denna process granskades flera toppmoderna schemaläggningsalgoritmer och skalningstekniker för att hitta en lämplig teknik. Genom att använda vår föreslagna skalningsteknikimplementering har vi uppnått 86,95% effektreduktion i jämförelse med det konventionella sättet att MUSEIC v2-chipets processor arbetar med en fast spänning och frekvens. Tekniker som inkluderar lätt sömn och djupt sömnläge studerades och implementerades, vilket testade systemets förmåga att tillgodose DPM-tekniker (Dynamic Power Management) som kan uppnå ännu större fördelar. En ny metod för att genomföra den djupa sömnmekanismen föreslogs också och enligt erhållna resultat så kan den ge upp till 71,54% lägre energiförbrukning jämfört med det traditionella sättet att implementera djupt sömnläge.
Ferreira, Gustavo Dorneles. "Otimização da confiabilidade de sistemas de distribuição de energia elétrica: uma abordagem considerando a seleção e alocação de dispositivos de proteção e manobras." Universidade Federal de Santa Maria, 2009. http://repositorio.ufsm.br/handle/1/8462.
Full textOne of the main goals of the electric utilities is to provide energy to its customers in a reliable and low cost way. Traditionally, the electricity sector regulatory commissions impose continuity targets, which must be carried out, to avoid great penalties. For many years, the electric utilities have adopted the practice of allowing the increment of temporary interruptions, aiming the reduction of permanent interruptions in energy supply, through coordinated protection schemes. However, due to the increase growing in electronic loads, and the existence of complex power-driven industrial processes, there is a less tolerance in short duration interruptions events. Therefore, the reliability must be characterized as widely way, considering the occurrence of such disturbances. The definition of protection devices types, and its arrangement in the feeder, enables the restriction of faults propagation, reducing the number of consumers subject to interruptions in energy supply. Similarly, the allocation of switching devices in an optimized way, provides a reduction of the interruptions duration, allowing the isolation of portions of the network subject to failure, the reconfiguration of the feeder and restoration of the supply to the consumer, in permanent interruptions cases. Targeting these factors, in this work are proposed two methods to optimize the reliability of electrical distribution systems. The optimization with a single objective is based on optimized allocation of protective and switching devices in the feeder, aiming the minimization of the reliability indices that considers the occurrence of permanent interruptions in energy supply. It is possible the choice of different indices, considering parameters such as load, number of consumers, and energy costs related to the occurrence of interruptions. The protection scheme, in this case is pre-defined (coordinated or selective), and applied to all reclosers allocated in the process of optimization, as well as the breaker of the substation. The second methodology - called double objective - is based on simultaneous minimization of reliability index that take into account the occurrence of permanent interruptions, and the indicator MAIFIE (Momentary Average Interruption Event Frequency Index), which considers the incidence of events that cause temporary interruptions in energy supply. Thus, besides the allocation of protection and switching devices, the optimization consists in definition of the protection scheme to be employed in reclosers and circuit breaker at the substation. Both formulations result in models of nonlinear programming with discontinuous and non-differentiable objective functions, subject to non-linear restrictions. These restrictions reflect in economic and technical limitations, such as coordination and selectivity between the protective devices, topology of the feeder, maximum number of devices available for allocation, and others. In order to find the best solution of the problem with single objective, a Simple Genetic Algorithm is proposed. A conjunct of best solutions of the dual objective problem was accomplished by using Multiobjective Genetic Algorithm. Among these, the most appropriate solution is selected through the use of Fuzzy Inference System. The performance of the algorithms and the quality of the solutions were verified by submitting a real 421 bus distribution system in the process of optimization. The results are commented and compared with the commonly practices used by electric companies.
Uma das principais metas das empresas concessionárias é fornecer energia a seus clientes de forma confiável e com baixo custo. Tradicionalmente, órgãos reguladores do setor elétrico estabelecem metas de continuidade, que devem ser satisfeitas sob pena da aplicação de vultosas multas. Durante muitos anos, as concessionárias têm adotado a prática de permitir o incremento das interrupções temporárias, visando à diminuição na ocorrência das interrupções permanentes no fornecimento de energia, pelo emprego do esquema de proteção coordenado. Entretanto, com o crescente aumento das cargas eletrônicas, e a existência de processos industriais automatizados cada vez mais complexos, existe uma menor tolerância à ocorrência de interrupções de curta duração. Logo, a confiabilidade deve ser caracterizada de forma mais ampla, considerando a ocorrência deste tipo de distúrbio. A definição dos tipos de dispositivos de proteção, e a disposição dos mesmos em locais específicos do alimentador, possibilitam restringir a propagação de faltas, reduzindo o número de consumidores submetidos a interrupções no fornecimento de energia. De forma semelhante, a alocação de chaves de manobras de maneira otimizada provê meios de reduzir a duração das interrupções, possibilitando a isolação de trechos da rede sob condição de falta, a reconfiguração do alimentador e o restabelecimento do fornecimento à parte dos consumidores, caso ocorram interrupções permanentes. Visando estes fatores, neste trabalho são propostas duas metodologias de otimização da confiabilidade de sistemas elétricos de distribuição. A otimização com objetivo único consiste na alocação de dispositivos de proteção e manobras no alimentador, visando à minimização de indicadores de confiabilidade que consideram a ocorrência de interrupções permanentes no fornecimento de energia. É possível a escolha de diferentes indicadores, considerando parâmetros como: carga, número de consumidores, energia e custos relacionados à ocorrência de interrupções. O esquema de proteção, neste caso é pré-definido (coordenado ou seletivo), sendo aplicado a todos os religadores alocados no processo de otimização, inclusive ao disjuntor da subestação. A segunda metodologia denominada duplo objetivo consiste na minimização simultânea de um indicador de confiabilidade que considera a ocorrência de interrupções permanentes, e do indicador MAIFIE (Momentary Average Interruption Event Frequency Index), que considera a ocorrência de eventos causadores de interrupções temporárias no fornecimento de energia. Desta forma, além da alocação dos dispositivos de proteção e manobras, o processo de otimização visa definir o esquema de proteção a ser empregado nos religadores, bem como no disjuntor da subestação. Ambas as formulações resultam em modelos de programação não-lineares, com funções objetivo descontínuas e não diferenciáveis, sujeitas a restrições não-lineares. Estas restrições refletem limitações técnicas e econômicas, tais como coordenação e seletividade entre os dispositivos de proteção, topologia do alimentador, número máximo de dispositivos disponíveis para alocação, entre outras. Na busca da melhor solução do problema com objetivo único é empregado o Algoritmo Genético Simples. Um conjunto de soluções ótimas do problema duplo objetivo é obtido utilizando o Algoritmo Genético Multiobjetivo. Dentre estas, a solução mais adequada é selecionada por meio de um Sistema de Inferência Nebulosa. O desempenho dos algoritmos e a qualidade das soluções foram verificados submetendo um sistema de distribuição real de 421 barras ao processo de otimização. Por fim, os resultados são comentados e comparados com as práticas mais utilizadas pelas concessionárias.
Beye, Mamadou Lamine. "Etude et contribution à l’optimisation de la commande des HEMTs GaN." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI102.
Full textThis thesis is part of the sustainable development context where the energy challenges rely on designing numerous and lumped power converters with good power density and high efficiency. New power semiconductor devices, namely wide band semiconductors (GaN, SiC) are used in designing the converters. The high frequency control of these converters makes the system more sensitive to parasitic elements. The latter elements disrupt the switching behavior of the transistors and generate additional losses. In this context this work was carried out in a cotutelle partnership between Ampère Laboratory in Villeurbanne and LN2 laboratory at the University of Sherbrooke; the aim being to make a contribution in optimizing the switching conditions of GaN HEMTs. The first work axis consists in managing the voltage and current switching speed through gate control strategies in order to improve the conducted EMI. Firstly, most of the proposed control circuits are developed in open-loop and then secondly in closed-loop in order to compensate the effects of non-linearities (with respect to temperature, load current and operating voltage). Concerning the development of control systems, it can be done first by the use of available discrete components, then by the alternative of the monolithic GaN integration which is considered in order to bring more speed and efficiency. Monolithic integration would also solve the problem of parasitic inductances. To facilitate the design of integrated circuits and control systems, the development of a behavioral model of HEMT GaN will serve as a modeling tool. The second axis of the work consists in experimentally validating well-adapted control system for the gate of the power transistor in order to master the transient behaviors of the power transistors. Namely it is necessary to allow a satisfying management of losses during dead time in a half bridge converter. At the end of this work, the control systems developed in open loop made it possible to slow the switching speeds by at least 30 % but causing an increase in switching losses up to 50% in some cases. Due to the fast switching speed of HEMT GaNs and the limitations of discrete components on the market, the reduction rate of switching speeds obtained with the closed loop (reduction rate less than 20%) is less attractive than that of the open loop. Using a monolithic circuit can be an alternative to increase the rate of reduction of closed loop switching speeds. SPICE simulation toward monolithic circuit are the basis of this hypothesis. Concerning the second axis, the application of multilevel gate voltage control of the transistors of half bridge made it possible to reduce the losses of reverse conduction and the losses due to the phenomena of Cross Talk by at least by 30 %
Masoud, Khalid Hasan. "Circuits and controls for grid-connected inverters." Thesis, Queensland University of Technology, 2002.
Find full textVariar, Harsha B. "Device-Circuit Reliability Co-Design in High voltage and Power devices." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5875.
Full textAlexandrov, Petre. "Development of 4H-SiC high voltage unipolar power switching devices." 2009. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000051772.
Full textLi, Shang-Rong, and 李尚融. "Switching Characteristics of Low-Power Al2O3/TiO2 Resistive Memory Devices." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/86563613444454471696.
Full text國立交通大學
電子工程學系 電子研究所
101
As the technology development, the nonvolatile memory (NVM) plays an important role in our daily life, such as mobile phones, digital cameras and laptop, have significantly increase the demand for nonvolatile memory (NVM) with the years in semiconductor industry. The flash memory nowadays is considered as the mainstream. However, due to the further scaling limitation, it faces serious challenges. The resistive random access memory (RRAM) shows a great potential for the next generation NVM application, due to its low operation voltage, high-speed switch, low power, high density integration and simple structure, etc. In this study, we report the effect of different top electrode (Nickel, Tantalum Nitride) and a low 0.752mW (188μA at 4V; 2.6μA at -5V) power resistive switching RRAM device with Ni/Al2O3 (6nm)/TiO2/TaN RRAM structure. The RRAM device characteristics, such as on/off resistance ratio (>100), data retention (104s at 60℃), satisfactory pulse switching endurance (50 cycles), current distribution, and conduction mechanism, etc., are investigated. The top electrode with different work function may have influences for the electrical properties. This RRAM device indicates that the carrier transport is dominated by the hopping conduction via material defects such as oxygen-vacancies in this RRAM. Such as low-power switching is a great promise for future scalable memory application, a merit of this RRAM.
Nelson, Jody J. "Investigations on parallel operation and thermal analysis of switching power semiconductor devices." 2002. http://catalog.hathitrust.org/api/volumes/oclc/50862859.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (p. 205-212).
Lin, Jhe-yu, and 林哲宇. "Using GaN Switching Devices for Common Mode EMI Reduction in Power Converters." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/wnxkgy.
Full text國立臺灣大學
電機工程學研究所
105
The gallium nitride (GaN) cascode switch has received much attention recently for line-operated medium-high frequency (200 kHz to 500 kHz) applications. Because of its device structure, there are two package options available with regard to the tab internal connection; either the drain terminal or the source terminal is electrically connected to the metallic plate of the device package, unlike the conventional vertical power Si based MOSFET in which the drain terminal can be connected to the device metallic plate. It is proposed in the dissertation that taking advantage of the unique feature of GaN devices packages mentioned above and using a proper combination of the GaN devices in a converter circuit converter common mode noise can be reduced. As a result, the converter conducted EMI can be reduced. The theory is explained and the rule for proper package selection are described in the dissertertation. A 240-Watt LLC power converter with a front-end power-factor-correction (PFC) circuit was built for experimental verification. In the experiment, significant reduction in the conducted EMI was observed. The proposed strategy can be applied to other converter or inverter configurations. GaN devices provide an option, unavailable in power MOSFET devices to significantly reduce the converter conducted EMI.
Po-WeiHuang and 黃柏維. "Design of Flux-Switching Actuators with Auto-locking Function for Power Assist Devices." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/24575885865027141315.
Full text國立成功大學
機械工程學系
102
This research aims to design a flux-switching actuator with an auto-locking function for power assist devices. Traditional actuators used in situations of brief travel and discontinuity, such as power assistive devices, usually need to stop at a position for a long time but still require electric power supply to maintain sufficient electromagnetic force. This research presents a new flux switching device (FSD) based on the design concept of dual gap permanent magnet motors (PM motors) and magnetic bases. Applications of this device include incorporation with direct-drive motors or motors with gear ratios, which further enable high/low cogging torque switching ability by modifying the flux path. When the proposed actuator is operated in low cogging torque mode, it functions as the traditional device; however, when the actuator needs to maintain the same position, the cogging torque is adopted automatically and alternates to electromagnetic force in high cogging torque mode. This feature can improve the safety of users and products. In order to widen FSD applications, this research also presents two improved actuator designs. The first improvement starts with investigations of the rotor structure and output characteristics of line start permanent magnet motors (LSPMMs). Moreover, the open angle of V-shaped magnets, which possesses better efficiency, is designed such that the prototype efficiency can reach 90%. With this investigation, this research integrates the rotor structure of LSPMMs into the actuator design and presents a new outer rotor type LSPMM, which can be incorporated with FSD and can start up without sensors, encoders, or inverters. To summarize the second improvement, four axial winding coils are added to improve the actuator design, which ensures that the axial magnetic field is controllable; thus, the switching process becomes smoother and the performance more stable. With these two improvements, the actuator developed in this dissertation is applicable to various conditions.
Nidhi, Karuna, and Karuna Nidhi. "Unclamped Inductive Switching (UIS) test- A Power MOSFET Reliability Study for Multi-finger Devices." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/98548718649295283467.
Full text亞洲大學
資訊工程學系碩士班
100
Discrete power MOSFETs are increasingly playing an important role in automotive electronics such as motor control where inductive loads are driven by the power devices. As a consequence, the ability of the MOSFET to withstand instances of unclamped inductive switching (UIS) is an important performance metric i.e. the ruggedness of the MOSFET. It had been proposed that the current failure mode is considered to be dominant at small external inductances while temperature failure usually occurred in device connected to large external inductive loads in UIS test. However, the failure mechanisms of device caused by the variation of external inductor cannot reflect the natural failure phenomena in power devices. In this work we present failure analysis of N-LDMOS under avalanche breakdown condition shows that the failure mechanism in a power MOSFET device depends on the number of device-fingers at a fixed inductive load. By TCAD simulation we observe that the device with lesser number of fingers (till 16) fail because of current failure mechanism as heat generated due to high current eventually destroys the parasitic transistor and hence contributes to failure. For higher fingers ranging from 16 to 100, time in avalanche, tAV gets prolonged in multi-finger device design. As a result, self-heating is more which causes temperature-failure in multi-finger device. The maximum amount of UIS energy i.e. Energy in avalanche, Single pulse (EAS) sustained by the device before failure is evaluated by Synopsys simulation tools. It is found that EAS has a linear relationship with number of device finger and device-width. We also present the optimized structure by modifying the poly-gate length which results higher energy in avalanche. Sensitive parameters in repetitive UIS tests such as duty cycle and finger design layout are also studied.
Burgers, K. C. "The non-linear resonant pole soft switching inverter with induction machine load." Thesis, 2014. http://hdl.handle.net/10210/10226.
Full textThe non-linear resonant pole (NLRP) inverter is part of the family of soft switching topologies based on resonant phenomena. The sequence of commutation that occurs between the semiconductors of a conventional voltage source inverter is modified through the mechanisms of energy exchange between added passive energy storage components. The NLRP inverter, through its psuedo resonant behaviour (resonant transition), gives rise to zero voltage and zero current turn-on of the switching devices as well as soft turn-off. The switching device voltage stresses are around 1 p.u, while the current stresses are reduced to around 1.3 p.u, by feeding back a portion of the load current. The rms current flowing through the inductor and switches is greatly reduced by driving the inductor into saturation (non-linear mode of operation). The advantages of soft switching, such as high switching frequency which allows greater dynamic response and higher power densities, along with reduced EMI, are achieved with this topology. Detailed analysis at multi- and sub-cycle levels is carried out, resulting in circuit equations and the criteria for commutation success. The commutation boundaries of the inverter are defined and methods discussed on how to extend them. The modulation of the NLRP inverter and some aspects regarding its use as part of both low and high performance induction motor drives are presented.
Lin, Jhan-Cheng, and 林展丞. "A 13.56MHz Reconfigurable Wireless Power Receiver with Adaptive Switching Delay Compensation for Implantable Medical Devices." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/10118585423522592179.
Full text國立交通大學
電子研究所
105
In this thesis, a 13.56MHz regulated rectifier is proposed which consists of rectification and regulation functions in one converter. By adopting the digital pulse width modulation (DPWM) technology to generate a regulated DC output voltage. Since the wireless power transmission system for the higher frequency 13.56 MHz, the switching delay of the power transistor will seriously affect the transmission efficiency of the rectifier. Thus, an adaptive switch delay compensation techniques (ADCT) have also been developed. To achieve high efficiency in different input amplitude range, also can reduce the effects of process variation. ADCT can compensate for both turn-on and turn-off delay by calibrate the comparator input offset voltage and the power MOS conduction time automatically to achieve maximum conversion power and minimize the reverse leakage current. Regulated rectifier proposed in this paper is fabricated in TSMC 0.18um process, followed by simulation can reach the highest power conversion efficiency was 88.8%, the output power is 36mW. Can tolerate a range of input AC amplitude is 1V ~ 3.3V.
Kuo, Ting-Wan, and 郭庭旺. "IC Design and Implementation of A Boosted Voltage Generator Used in Memory Devices and Low Power Discrete Cosine Transform." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/16812775147186614386.
Full text國立中山大學
電機工程學系研究所
91
The first topic of this thesis is a novel voltage tripler using 4 clocks with different phases. Both the positive and negative polarities of the voltage are generated to serve as the boosted voltage and the back bias voltage. The proposed design is carried out by pass transistors and switched capacitors. The second topic is a low-power discrete cosine transform (DCT) processor. It is suitable for portable applications. The number of clock cycles needed for processing an 8×8 block of pixels is increased, but the chip area is reduced. The reduction of the chip area leads to the reduction of the power dissipation.
Shyu, Chen Hong, and 陳泓旭. "Design and Implementation of Full Bridge Resonant Converter with 500 kHz Switching Frequency Using Wide Bandgap Power Semiconductor Devices." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/7jwdp2.
Full text國立臺北科技大學
電機工程系電力電子產業研發碩士專班
105
GaN HEMTs are already devoloped in recent years, stability of GaN HEMTs has grow year by year, it has more suitable choosing for any specifications. The characteristic of GaN HEMTs is better than Si MOSFET in every way. Used GaN HEMTs component can let converter operate in higher frequency. The objective of this thesis is to design and implement a digital-controllor full bridge resonant converter. Because of parasitic inductance let MOSFET effect large voltage stress when MOSFET operate the high frequency. Therefore, the thesis used advantage of planar to reduce leakage inductance, stray capacitance and increase the power density. The signal processor, TMS320F2335, is used as control platform. The design specifications include: input DC voltage of 400V, output voltage of 12V, total power rating of 300 W, switching frequency of 450 kHz ~ 550 kHz. Simulation and experimental result show is 90.63% about half load condition the efficiency. These results confirm the design and implementation.
Chen, Hsuan-Yeh, and 陳宣燁. "A Protocol to Protocol Switching Mechanism for Energy Saving of Power-Constrained Devices in LTE and NB-IoT Interworking Networks." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/h2u6c6.
Full text國立臺灣大學
資訊工程學研究所
106
The well development of Mobile Communications Networks (MCNs) causes the dramatically increasing of the smart devices. The smart devices such as wearable devices have limited battery lifetime so that it has the better choice to use the NB-IoT protocol to transmit the small data for the purpose of power saving. The wearable devices are also able to make the voice call through the VoLTE. Therefore, the interworking of the NB-IoT and LTE networks is necessary in the future. The power saving issue is generated if both NB-IoT and LTE interface of the UE attach to the networks. We propose the Protocol to Protocol Switching Mechanism (P2PSM) to enable the dual-mode UE to be supported in the NB-IoT and LTE interworking network and reduce the power consumption. The analytical models and simulation experiments are conducted to investigate the performance of the P2PSM mechanism. Our study shows that the proposed P2PSM mechanism can efficiently reduce the power consumption of the UE.
Lu, Shin-Fu, and 盧信甫. "A 6.78 MHz GaN-Based Class-E Resonant Wireless Power Transfer Transmitter with Automatic Switching Slope Tracking Control for Charging Multiple Devices." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/6qdmjj.
Full text(7025126), Ahmedullah Aziz. "Device-Circuit Co-Design Employing Phase Transition Materials for Low Power Electronics." Thesis, 2019.
Find full textPhase transition materials (PTM) have garnered immense interest in concurrent post-CMOS electronics, due to their unique properties such as - electrically driven abrupt resistance switching, hysteresis, and high selectivity. The phase transitions can be attributed to diverse material-specific phenomena, including- correlated electrons, filamentary ion diffusion, and dimerization. In this research, we explore the application space for these materials through extensive device-circuit co-design and propose new ideas harnessing their unique electrical properties. The abrupt transitions and high selectivity of PTMs enable steep (< 60 mV/decade) switching characteristics in Hyper-FET, a promising post-CMOS transistor. We explore device-circuit co-design methodology for Hyper-FET and identify the criterion for material down-selection. We evaluate the achievable voltage swing, energy-delay trade-off, and noise response for this novel device. In addition to the application in low power logic device, PTMs can actively facilitate non-volatile memory design. We propose a PTM augmented Spin Transfer Torque (STT) MRAM that utilizes selective phase transitions to boost the sense margin and stability of stored data, simultaneously. We show that such selective transitions can also be used to improve other MRAM designs with separate read/write paths, avoiding the possibility of read-write conflicts. Further, we analyze the application of PTMs as selectors in cross-point memories. We establish a general simulation framework for cross-point memory array with PTM based selector. We explore the biasing constraints, develop detailed design methodology, and deduce figures of merit for PTM selectors. We also develop a computationally efficient compact model to estimate the leakage through the sneak paths in a cross-point array. Subsequently, we present a new sense amplifier design utilizing PTM, which offers built-in tunable reference with low power and area demand. Finally, we show that the hysteretic characteristics of unipolar PTMs can be utilized to achieve highly efficient rectification. We validate the idea by demonstrating significant design improvements in a Cockcroft-Walton Multiplier, implemented with TS based rectifiers. We emphasize the need to explore other PTMs with high endurance, thermal stability, and faster switching to enable many more innovative applications in the future.
Otto, Alexander. "Lebensdauermodellierung diskreter Leistungselektronikbauelemente unter Berücksichtigung überlagerter Lastwechseltests." 2019. https://monarch.qucosa.de/id/qucosa%3A74138.
Full textActive power cycling tests represent a standardized and well-established method for reliability evaluation and product qualification in power electronics. They are based on the application of recurring load current pulses, which are converted into cyclic temperature swings in the power component. The thereby induced thermo-mechanical stress, caused by the different material properties of the joining partners involved in the composite system, ultimately leads to the typical failure modes and mechanisms in the devices. However, these conventional tests do not sufficiently stimulate the complex load schemes in field operations in which different load factors occur simultaneously. In the context of the introduction of novel device and package technologies, increasingly harsh environmental operation conditions as well as increasing reliability and functional safety requirements, there is a need for improved reliability test methods. One possible approach is the combination of different load factors in order to increase test efficiency and test coverage. Within the scope of this thesis, systematic reliability investigations, including standard power cycling tests as well as power cycling tests superimposed with passive thermal cycles, were therefore carried out on discrete power components using a self-developed test rig. In addition to the investigation of different junction temperature profiles, a comparison of different component types was performed. On the basis of a qualitative and quantitative test evaluation, load-based lifetime models were derived. It was found that the lifetime models determined on the basis of the standard power cycling tests could not predict the test results of the superimposed power cycling tests. The reason for this was the influence of the temperature-dependent material behaviour of the moulding com-pound, which has an influence on the failure mode wire-bond lift-off. Based on these findings, the use of case-sensitive lifetime models is suggested that are able to take the changed damage physics into account. In addition, a new method for the optical in-situ investigation of moulded power devices is presented, which allows the investigation of thermal-transient as well as thermo-mechanical processes in the package under active loading conditions.:Symbol- und Abkürzungsverzeichnis Danksagung Kurzfassung Abstract 1 Einleitung 1.1 Motivation 1.2 Fokus und Ziel der Arbeit 2 Grundlagen zur Leistungselektronik und zu ihrer Zuverlässigkeitsbewertung 2.1 Aufbau typischer Leistungselektronikkomponenten und Module 2.1.1 Leistungsklassen und klassische Aufbauvarianten 2.1.2 Leistungshalbleiter 2.1.3 Substrattechnologien für Leistungsmodule 2.1.4 Verbindungstechniken in Leistungselektronikmodulen 2.1.4.1 Chipflächen- und Baugruppenkontaktierung 2.1.4.2 Chipanschlusskontaktierung 2.1.4.3 Kühlkörperanbindung 2.1.5 Verkapslungskonzepte 2.1.6 Kühlkonzepte in der Leistungselektronik 2.2 Typische Fehlermodi und -mechanismen 2.3 Lebensdauerbewertung von Leistungselektronik0 2.3.1 Globale Ansätze zur Produktqualifizierung und Zuverlässigkeitsbewertung0 2.3.2 Lebensdauertests in der Leistungselektronik 2.3.2.1 Überblick und Einordnung von Lastwechseltests 2.3.2.2 Testkonzepte und -strategien 2.3.3 Lebensdauermodellierung 3 Neue methodische Ansätze und Prüfstandsentwicklung 3.1 Überlagerung von aktiven Lastwechseln mit passiven Temperaturzyklen 3.2 Entwicklung und Aufbau eines Lastwechselprüfstandes zur Untersuchung von überlagerten Belastungstests 3.2.1 Konzeption 3.2.2 Kühlkörper-Design 3.2.3 Steuer- und Auswertesoftware 3.2.4 Lastwechselteststand 3.2.5 Messprozedur 3.2.6 Validierung der Tvj-basierten Temperaturmessung 3.3 Optisches In-situ-Monitoring während Lastwechseltests 3.3.1 Testaufbau und Probenpräparation 3.3.2 IR-Messungen an angeschliffenem Prüfling 4 Prüfgegenstände, Testplanung und Testdurchführung 4.1 Auswahl und Übersicht der Prüflinge 4.2 Testkonzeption und Versuchsplanung 4.2.1 Lastwechseltests 4.2.2 Temperaturschocktests 4.3 Testaufbau und -durchführung 4.3.1 Lastwechseltests 4.3.2 Temperaturschocktests 5 Testergebnisse 5.1 Messdatenanalyse und Auswerteprozedur 5.2 Statistische Testauswertung 5.2.1 Übersicht über Testergebnisse 5.2.2 Weibull-Verteilungen 5.3 Fehleranalytik 5.3.1 Bonddrahtausfälle 5.3.2 Lotdegradation 5.4 Optische In-situ-Analyse während aktiver Belastung 5.4.1 Methodik 5.4.2 Verschiebungsfelder in Abhängigkeit von ∆Tvj und Tvj,m 5.4.3 Einfluss der Einschaltzeit ton auf Verschiebungsfelder 5.4.4 Ableitung der Dehnungsfelder und Ergebnisdiskussion 6 Lebensdauermodellierung 6.1 Belastungsbasierte Lebensdauermodelle 6.1.1 Lebensdauerdiagramme und -einflussfaktoren 6.1.2 Multiple lineare Regression 6.1.3 Berücksichtigung der effektiven Temperatur T(v)j,eff 6.1.4 Vergleich der Lebensdauermodelle mit überlagerten Testergebnissen 6.1.5 Zusammenfassung 146 6.1.6 Einordnung der ermittelten Lebensdauermodelle 6.2 FE-Analyse zur Validierung der Ergebnisse aus der Lebensdauermodellierung 7 Zusammenfassung und Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis