Academic literature on the topic 'Discrete Particle Swarm Optimization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Discrete Particle Swarm Optimization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Discrete Particle Swarm Optimization"
Roy, Rahul, Satchidananda Dehuri, and Sung Bae Cho. "A Novel Particle Swarm Optimization Algorithm for Multi-Objective Combinatorial Optimization Problem." International Journal of Applied Metaheuristic Computing 2, no. 4 (October 2011): 41–57. http://dx.doi.org/10.4018/jamc.2011100104.
Full textXiao, Bin, and Zhao Hui Li. "An Improved Hybrid Discrete Particle Swarm Optimization Algorithm to Solve the TSP Problem." Applied Mechanics and Materials 130-134 (October 2011): 3589–94. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.3589.
Full textTing, T. O., H. C. Ting, and T. S. Lee. "Taguchi-Particle Swarm Optimization for Numerical Optimization." International Journal of Swarm Intelligence Research 1, no. 2 (April 2010): 18–33. http://dx.doi.org/10.4018/jsir.2010040102.
Full textWang, Bei Zhan, Xiang Deng, Wei Chuan Ye, and Hai Fang Wei. "Study on Discrete Particle Swarm Optimization Algorithm." Applied Mechanics and Materials 220-223 (November 2012): 1787–94. http://dx.doi.org/10.4028/www.scientific.net/amm.220-223.1787.
Full textKang, Qi, Lei Wang, and Qidi Wu. "Swarm-based approximate dynamic optimization process for discrete particle swarm optimization system." International Journal of Bio-Inspired Computation 1, no. 1/2 (2009): 61. http://dx.doi.org/10.1504/ijbic.2009.022774.
Full textBeheshti, Zahra, Siti Mariyam Shamsuddin, and Shafaatunnur Hasan. "Memetic binary particle swarm optimization for discrete optimization problems." Information Sciences 299 (April 2015): 58–84. http://dx.doi.org/10.1016/j.ins.2014.12.016.
Full textSarathambekai, S., and K. Umamaheswari. "Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem." Journal of Algorithms & Computational Technology 11, no. 1 (September 19, 2016): 58–67. http://dx.doi.org/10.1177/1748301816665521.
Full textZhang, Jun Ting, and Li Xia Qiao. "Optimization Mechanism Control Strategy of Vehicle Routing Problem Based on Improved PSO." Advanced Materials Research 681 (April 2013): 130–36. http://dx.doi.org/10.4028/www.scientific.net/amr.681.130.
Full textWu, Yanmin, and Qipeng Song. "Improved Particle Swarm Optimization Algorithm in Power System Network Reconfiguration." Mathematical Problems in Engineering 2021 (March 11, 2021): 1–10. http://dx.doi.org/10.1155/2021/5574501.
Full textR. B., Madhumala, Harshvardhan Tiwari, and Devaraj Verma C. "Resource Optimization in Cloud Data Centers Using Particle Swarm Optimization." International Journal of Cloud Applications and Computing 12, no. 2 (April 1, 2022): 1–12. http://dx.doi.org/10.4018/ijcac.305856.
Full textDissertations / Theses on the topic "Discrete Particle Swarm Optimization"
Djaneye-Boundjou, Ouboti Seydou Eyanaa. "Particle Swarm Optimization Stability Analysis." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1386413941.
Full textMuthuswamy, Shanthi. "Discrete particle swarm optimization algorithms for orienteering and team orienteering problems." Diss., Online access via UMI:, 2009.
Find full textAminbakhsh, Saman. "Hybrid Particle Swarm Optimization Algorithm For Obtaining Pareto Front Of Discrete Time-cost Trade-off Problem." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615398/index.pdf.
Full textDevarakonda, SaiPrasanth. "Particle Swarm Optimization." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1335827032.
Full textAl-kazemi, Buthainah Sabeeh No'man. "Multiphase particle swarm optimization." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2002. http://wwwlib.umi.com/cr/syr/main.
Full textJUNQUEIRA, Caio Marco dos Santos. "Um algoritmo para alocação ótima de detectores de afundamentos de tensão." Universidade Federal de Campina Grande, 2017. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/479.
Full textMade available in DSpace on 2018-04-24T17:30:10Z (GMT). No. of bitstreams: 1 CAIO MARCO DOS SANTOS JUNQUEIRA – DISSERTAÇÃO (PPGEE) 2017.pdf: 6011061 bytes, checksum: 25c9c9fad6015613e54aae9e700918af (MD5) Previous issue date: 2017-03-09
Capes
Um algoritmo para alocação ótima de detectores de afundamentos de tensão (AT) é apresentado nesta dissertação. O algoritmo utiliza a Transformada Wavelet Discreta (TWD) paraa detecção de AT e o conceito de Matriz de Observabilidade Topológica (MOT) para avaliar o desempenho dos Sistemas de Distribuição de Energia Elétrica (SDEE) quando submetidos à tais distúrbios. Para resolver o problema de alocação ótima dos dispositivos detectores de AT, utilizou-se o método Binary Particle Swarm Optimi- tization (BPSO). Adicionalmente, apresenta-se uma metodologia de criação de uma base de dados para geração automática de AT. O algoritmo foi avaliado considerando-se dois sistemas: um sistema-testedo IEEE e um SDEE que simula um alimentador real da cidade de BoaVista-PB, os quais foram simulados no software Alternative Transient Pro- gram (ATP). Osresultados obtidos indicaram que o algoritmo é capaz de detectar AT em todo o sistema, fazendo o uso da instalação de detectores em poucas barras, oque indubitavelmente, reduzirá o custo do sistema de monitoramento.
An algorithm for optimal placement of voltage sags (VS) detectors is presented in this dissertation. The algorithm uses the Discrete Wavelet Transform (DWT) for VS detection and the Topological Observability Matrix (TOM) concept to evaluate the per- formance of the Electric Power Distribution Systems (EPDS) when subjected to such disturbances. In order to solve the problem of optimal placement of the VS detecting devices, the Binary Particle Swarm Optimization (BPSO) method was used. Additionally, a methodology for the creation of a database for automatic VS generation is presented. The algorithm was evaluated considering two systems: an IEEE test system and a EPDS that simulates a real feeder in Boa Vista-PB city, which were simulated in the Alternative Transient Program (ATP) software. The results indicate that the algorithm is capable of detecting VS throughout the system, using the installation of detectors in a few buses, which will undoubtedly reduce the cost of the monitoring system.
Bernardes, Wellington Maycon Santos. "Algoritmo enxame de partículas discreto para coordenação de relés direcionais de sobrecorrente em sistemas elétricos de potência." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/18/18154/tde-14052013-094113/.
Full textThis work proposes a methodology that based on intelligent technique to obtain an optimized coordination of directional overcurrent relays in electric power systems. The problem is modeled as a mixed integer nonlinear problem, because the relays allows a discrete setting of time and/or current multipliers. The solution of the proposed optimization problem is obtained from the proposed metaheuristic named as Discrete Particle Swarm Optimization. In scientific and technical literature this problem is usually linearized and discrete variables are rounded off. In the proposed method, the discrete variables are modeled adequately in the metaheuristic and the results are compared to the classical optimization solvers implemented in General Algebraic Modeling System (GAMS). The method provides an important method for helping the engineers in to coordinate directional overcurrent relays in a very optimized way. It has high potential for the application to realistic systems, regardless of topology and operating condition.
Scheepers, Christiaan. "Multi-guided particle swarm optimization : a multi-objective particle swarm optimizer." Thesis, University of Pretoria, 2017. http://hdl.handle.net/2263/64041.
Full textThesis (PhD)--University of Pretoria, 2017.
Computer Science
PhD
Unrestricted
Karlberg, Hampus. "Task Scheduling Using Discrete Particle Swarm Optimisation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287311.
Full textOptimering av arbetsfördelning i nätverk kan öka användandet av tillgängliga resurser. I instabila heterogena nätverk kan schemaläggning användas för att optimera beräkningstid, energieffektivitet och systemstabilitet. Då nätverk består av sammankopplade resurser innebär det också att vad som är ett optimalt schema kan komma att ändras över tid. Bredden av nätverkskonfigurationer gör också att det kan vara svårt att överföra och applicera ett schema från en konfiguration till en annan. Diskret Particle Swarm Optimisation (DPSO) är en meta heuristisk metod som kan användas för att ta fram lösningar till schemaläggningsproblem. Den här uppsatsen kommer utforska hur DPSO kan användas för att optimera schemaläggning för instabila nätverk. Syftet är att hitta en lösning för nätverk under liknande begränsningar som de som återfinns på tåg. Detta för att i sin tur facilitera planerandet av optimala banor. Genom användandet av ett artificiellt neuralt nätverk (ANN) uppskattar vi schemaläggningskostnaden. Denna kostnad används sedan av DPSO heuristiken för att utforska en lösningsrymd med potentiella scheman. Våra resultat fokuserar på optimeringen av grupperingsstorleken av distribuerade problem i relation till robusthet och letens. Vi simulerar ett flertal instabila och heterogena nätverk och jämför deras prestanda. Utgångspunkten för jämförelsen är schemaläggning där uppgifter distribueras jämnt i bestämda gruperingsstorlekar. Prestandan analyseras sedan i relation till användbarheten i verkliga scenarion. Våra resultat visar på en signifikant ökning i prestanda inom ett brett spann av nätverkskonfigurationer. Det här är på bekostnad av långa söktider för DPSO algoritmen. Vår slutsats är att under rätt förutsättningar kan metoden användas för att snabba upp distribuerade beräkningar förutsatt att beräkningarna för schemaläggningen görs i förväg. Vi rekommenderar vidare utforskande av DPSO algoritmens parametrar för att snabba upp konvergens, samt undersökande av algoritmens prestanda i verkliga miljöer.
Czogalla, Jens. "Particle swarm optimization for scheduling problems." Aachen Shaker, 2010. http://d-nb.info/1002307813/04.
Full textBooks on the topic "Discrete Particle Swarm Optimization"
Lazinica, Aleksandar. Particle swarm optimization. Rijek, Crotia: InTech, 2009.
Find full textMercangöz, Burcu Adıgüzel, ed. Applying Particle Swarm Optimization. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70281-6.
Full textCouceiro, Micael, and Pedram Ghamisi. Fractional Order Darwinian Particle Swarm Optimization. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19635-0.
Full textMikki, Said M., and Ahmed A. Kishk. Particle Swarm Optimization: A Physics-Based Approach. Cham: Springer International Publishing, 2008. http://dx.doi.org/10.1007/978-3-031-01704-9.
Full textOlsson, Andrea E. Particle swarm optimization: Theory, techniques, and applications. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full text1974-, Parsopoulos Konstantinos E., and Vrahatis Michael N. 1955-, eds. Particle swarm optimization and intelligence: Advances and applications. Hershey, PA: Information Science Reference, 2010.
Find full textParsopoulos, Konstantinos E. Particle swarm optimization and intelligence: Advances and applications. Hershey, PA: Information Science Reference, 2010.
Find full textKiranyaz, Serkan, Turker Ince, and Moncef Gabbouj. Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-37846-1.
Full textChoi-Hong, Lai, and Wu Xiao-Jun, eds. Particle swarm optimisation: Classical and quantum perspectives. Boca Raton: CRC Press, 2011.
Find full textClerc, Maurice. Particle Swarm Optimization. Wiley & Sons, Incorporated, John, 2010.
Find full textBook chapters on the topic "Discrete Particle Swarm Optimization"
Liu, QingFeng. "An Improved Discrete Particle Swarm Optimization Algorithm." In Lecture Notes in Electrical Engineering, 883–90. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4853-1_108.
Full textKarthi, R., S. Arumugam, and K. Ramesh Kumar. "Discrete Particle Swarm Optimization Algorithm for Data Clustering." In Nature Inspired Cooperative Strategies for Optimization (NICSO 2008), 75–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03211-0_7.
Full textAkhand, M. A. H., Md Masudur Rahman, and Nazmul Siddique. "Advances on Particle Swarm Optimization in Solving Discrete Optimization Problems." In Studies in Computational Intelligence, 59–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09835-2_4.
Full textTao, Qian, Hui-you Chang, Yang Yi, Chun-qin Gu, and Wen-jie Li. "A Novel Cyclic Discrete Optimization Framework for Particle Swarm Optimization." In Lecture Notes in Computer Science, 166–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14922-1_22.
Full textClerc, Maurice. "Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman Problem." In New Optimization Techniques in Engineering, 219–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39930-8_8.
Full textGarg, Ritu, and Awadhesh Kumar Singh. "Multi-objective Workflow Grid Scheduling Based on Discrete Particle Swarm Optimization." In Swarm, Evolutionary, and Memetic Computing, 183–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-27172-4_23.
Full textZhan, Zhi-hui, and Jun Zhang. "Discrete Particle Swarm Optimization for Multiple Destination Routing Problems." In Lecture Notes in Computer Science, 117–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01129-0_15.
Full textYuan, Ying, Cuirong Wang, Cong Wang, Shiming Zhu, and Siwei Zhao. "Discrete Particle Swarm Optimization Algorithm for Virtual Network Reconfiguration." In Lecture Notes in Computer Science, 250–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38703-6_30.
Full textBui, Ha-Duong, Sungmoon Jeong, Nak Young Chong, and Matthew Mason. "Origami Folding Sequence Generation Using Discrete Particle Swarm Optimization." In Neural Information Processing, 484–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70093-9_51.
Full textZhang, Kai, Wanying Zhu, Jun Liu, and Juanjuan He. "Discrete Particle Swarm Optimization Algorithm for Solving Graph Coloring Problem." In Communications in Computer and Information Science, 643–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-49014-3_57.
Full textConference papers on the topic "Discrete Particle Swarm Optimization"
Sarif, Bambang A. B., and Mostafa Abd-El-Barr. "Functional synthesis using discrete particle swarm optimization." In 2008 IEEE Swarm Intelligence Symposium (SIS). IEEE, 2008. http://dx.doi.org/10.1109/sis.2008.4668306.
Full textEngelbrecht, A. P. "Asynchronous particle swarm optimization with discrete crossover." In 2014 IEEE Symposium On Swarm Intelligence (SIS). IEEE, 2014. http://dx.doi.org/10.1109/sis.2014.7011788.
Full textXu, Yufa, Guochu Chen, and Jinshou Yu. "Three Sub-Swarm Discrete Particle Swarm Optimization Algorithm." In 2006 IEEE International Conference on Information Acquisition. IEEE, 2006. http://dx.doi.org/10.1109/icia.2006.305922.
Full textEngelbrecht, AP. "Particle swarm optimization with discrete crossover." In 2013 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2013. http://dx.doi.org/10.1109/cec.2013.6557864.
Full textWang, Xin, Xing Wang, and Na Li. "Discrete local particle swarm optimization: A more rapid and precise hybrid particle swarm optimization." In 2013 9th International Conference on Natural Computation (ICNC). IEEE, 2013. http://dx.doi.org/10.1109/icnc.2013.6818030.
Full textLu, Qiang, Qing-He Xu, and Xue-Na Qiu. "Discrete Particle Swarm Optimization with Chaotic Initialization." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2009). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162645.
Full textStrasser, Shane, Rollie Goodman, John Sheppard, and Stephyn Butcher. "A New Discrete Particle Swarm Optimization Algorithm." In GECCO '16: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2908812.2908935.
Full textXu, Yiheng, Qiangwei Wang, and Jinglu Hu. "An Improved Discrete Particle Swarm Optimization Based on Cooperative Swarms." In 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. IEEE, 2008. http://dx.doi.org/10.1109/wiiat.2008.103.
Full textRao, Singiresu S., and Kiran K. Annamdas. "Particle Swarm Methodologies for Engineering Design Optimization." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87237.
Full textZhong Liu and Lei Huang. "A mixed discrete particle swarm optimization for TSP." In 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icacte.2010.5579238.
Full textReports on the topic "Discrete Particle Swarm Optimization"
Vtipil, Sharon, and John G. Warner. Earth Observing Satellite Orbit Design Via Particle Swarm Optimization. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada625084.
Full textSonugür, Güray, Celal Onur Gçkçe, Yavuz Bahadır Koca, and Şevket Semih Inci. Particle Swarm Optimization Based Optimal PID Controller for Quadcopters. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, December 2021. http://dx.doi.org/10.7546/crabs.2021.12.11.
Full textGökçe, Barış, Yavuz Bahadır Koca, Yılmaz Aslan, and Celal Onur Gökçe. Particle Swarm Optimization-based Optimal PID Control of an Agricultural Mobile Robot. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, April 2021. http://dx.doi.org/10.7546/crabs.2021.04.12.
Full textDavis, Jeremy, Amy Bednar, and Christopher Goodin. Optimizing maximally stable extremal regions (MSER) parameters using the particle swarm optimization algorithm. Engineer Research and Development Center (U.S.), September 2019. http://dx.doi.org/10.21079/11681/34160.
Full textStyling Parameter Optimization of the Type C Recreational Vehicle Air Drag. SAE International, September 2021. http://dx.doi.org/10.4271/2021-01-5094.
Full text