Academic literature on the topic 'Discrete Boltzmann equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Discrete Boltzmann equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Discrete Boltzmann equation"
Simonis, Stephan, Martin Frank, and Mathias J. Krause. "On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection–diffusion equations." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2175 (June 22, 2020): 20190400. http://dx.doi.org/10.1098/rsta.2019.0400.
Full textQU, KUN, CHANG SHU, and JINSHENG CAI. "DEVELOPING LBM-BASED FLUX SOLVER AND ITS APPLICATIONS IN MULTI-DIMENSION SIMULATIONS." International Journal of Modern Physics: Conference Series 19 (January 2012): 90–99. http://dx.doi.org/10.1142/s2010194512008628.
Full textHekmat, Mohamad Hamed, and Masoud Mirzaei. "Development of Discrete Adjoint Approach Based on the Lattice Boltzmann Method." Advances in Mechanical Engineering 6 (January 1, 2014): 230854. http://dx.doi.org/10.1155/2014/230854.
Full textBernhoff, Niclas. "Boundary Layers and Shock Profiles for the Broadwell Model." International Journal of Differential Equations 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/5801728.
Full textBanoo, K., F. Assad, and M. S. Lundstrom. "Formulation of the Boltzmann Equation as a Multi-Mode Drift-Diffusion Equation." VLSI Design 8, no. 1-4 (January 1, 1998): 539–44. http://dx.doi.org/10.1155/1998/59373.
Full textMARTYS, NICOS S. "ENERGY CONSERVING DISCRETE BOLTZMANN EQUATION FOR NONIDEAL SYSTEMS." International Journal of Modern Physics C 10, no. 07 (October 1999): 1367–82. http://dx.doi.org/10.1142/s0129183199001121.
Full textBELLOUQUID, A. "A DIFFUSIVE LIMIT FOR NONLINEAR DISCRETE VELOCITY MODELS." Mathematical Models and Methods in Applied Sciences 13, no. 01 (January 2003): 35–58. http://dx.doi.org/10.1142/s0218202503002374.
Full textHe, Xiaoyi, Xiaowen Shan, and Gary D. Doolen. "Discrete Boltzmann equation model for nonideal gases." Physical Review E 57, no. 1 (January 1, 1998): R13—R16. http://dx.doi.org/10.1103/physreve.57.r13.
Full textANDALLAH, LAEK S., and HANS BABOVSKY. "A DISCRETE BOLTZMANN EQUATION BASED ON HEXAGONS." Mathematical Models and Methods in Applied Sciences 13, no. 11 (November 2003): 1537–63. http://dx.doi.org/10.1142/s0218202503003021.
Full textMakai, Mihály. "Discrete Symmetries of the Linear Boltzmann equation." Transport Theory and Statistical Physics 15, no. 3 (May 1986): 249–73. http://dx.doi.org/10.1080/00411458608210452.
Full textDissertations / Theses on the topic "Discrete Boltzmann equation"
Morris, Aaron Benjamin. "Investigation of a discrete velocity Monte Carlo Boltzmann equation." Thesis, [Austin, Tex. : University of Texas, 2009. http://hdl.handle.net/2152/ETD-UT-2009-05-127.
Full textHåkman, Olof. "Boltzmann Equation and Discrete Velocity Models : A discrete velocity model for polyatomic molecules." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-76143.
Full textI studiet av kinetisk teori och speciellt i studiet av dynamik för tunna gaser vänder man sig ofta till Boltzmannekvationen. Den matematiska teorien utvecklad av Ludwig Boltzmann var vid första anblicken tillämpbar i flyg- och rymdteknik och strömningsmekanik. Idag generaliseras metoder i kinetisk teori till andra områden, till exempel inom molekylärbiologi och socioekonomi, vilket gör att vi har ett fortsatt behov av att finna effektiva lösningsmetoder. Vi studerar i denna uppsats den underliggande teorin av den kontinuerliga och diskreta Boltzmannekvationen för monatomiska gaser. Vi utvidgar teorin där det behövs för att täcka fallet då kolliderande molekyler innehar olika nivåer av intern energi. Vi diskuterar huvudsakligen diskreta hastighetsmodeller och presenterar explicita beräkningar för en modell av en gas bestående av polyatomiska molekyler modellerad med två lägen av intern energi.
Fonte, Massimo. "Analysis of singular solutions for two nonlinear wave equations." Doctoral thesis, SISSA, 2005. http://hdl.handle.net/20.500.11767/4197.
Full textBernhoff, Niclas. "On Half-Space and Shock-Wave Problems for Discrete Velocity Models of the Boltzmann Equation." Doctoral thesis, Karlstads universitet, Fakulteten för teknik- och naturvetenskap, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-2373.
Full textHübner, Thomas [Verfasser]. "A monolithic, off-lattice approach to the discrete Boltzmann equation with fast and accurate numerical methods / Thomas Hübner." Dortmund : Universitätsbibliothek Technische Universität Dortmund, 2011. http://d-nb.info/1011570777/34.
Full textMittal, Arpit. "Prediction of Non-Equilibrium Heat Conduction in Crystalline Materials Using the Boltzmann Transport Equation for Phonons." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1316471562.
Full textD'ALMEIDA, AMAH SENA. "Etude des solutions des equations de boltzmann discretes et applications." Paris 6, 1995. http://www.theses.fr/1995PA066007.
Full textJobic, Yann. "Numerical approach by kinetic methods of transport phenomena in heterogeneous media." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4723/document.
Full textA novel kinetic scheme satisfying an entropy condition is developed, tested and implemented for the simulation of practical problems. The construction of this new entropic scheme is presented. A classical hyperbolic system is approximated by a discrete velocity vector kinetic scheme (with the simplified BGK collisional operator), but applied to an inviscid compressible gas dynamics system with a small Mach number parameter, according to the approach of Carfora and Natalini (2008). The numerical viscosity is controlled, and tends to the physical viscosity of the Navier-Stokes system. The proposed numerical scheme is analyzed and formulated as an explicit finite volume flux vector splitting (FVS) scheme that is very easy to implement. It is close in spirit to Lattice Boltzmann schemes, but it has the advantage to satisfy a discrete entropy inequality under a CFL condition and a subcharacteristic stability condition involving a cell Reynolds number. The new scheme is proved to be second-order accurate in space. We show the efficiency of the method in terms of accuracy and robustness on a variety of classical benchmark tests. Some physical problems have been studied in order to show the usefulness of both schemes. The LB code was successfully used to determine the longitudinal dispersion of metallic foams, with the use of a novel indicator. The entropic code was used to determine the permeability tensor of various porous media, from the Fontainebleau sandstone (low porosity) to a redwood tree sample (high porosity). These results are pretty accurate. Finally, the entropic framework is applied to the advection-diffusion equation as a passive scalar
Hegermiller, David Benjamin. "A new method to incorporate internal energy into a discrete velocity Monte Carlo Boltzmann Equation solver." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4328.
Full texttext
Books on the topic "Discrete Boltzmann equation"
Discrete nonlinear models of the Boltzmann equation. Moscow: General Editorial Board for Foreign Language Publications, Nauka Publishers, 1987.
Find full textLuigi, Preziosi, ed. Fluid dynamic applications of the discrete Boltzmann equation. Singapore: World Scientific, 1991.
Find full textBook chapters on the topic "Discrete Boltzmann equation"
Cabannes, Henri. "Discrete Boltzmann Equation with Multiple Collisions." In Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, 109–18. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-87871-7_13.
Full textBellomo, Nicola, and Luciano M. de Socio. "On the Discrete Boltzmann Equation for Binary Gas Mixtures." In Rarefied Gas Dynamics, 1269–76. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2467-6_58.
Full textCabannes, Henri. "Survey on Exact Solutions for Discrete Models of the Boltzmann Equation." In Computational Fluid Dynamics, 103–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79440-7_7.
Full textMuljadi, Bagus Putra, and Jaw-Yen Yang. "A Direct Boltzmann-BGK Equation Solver for Arbitrary Statistics Using the Conservation Element/Solution Element and Discrete Ordinate Method." In Computational Fluid Dynamics 2010, 637–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17884-9_81.
Full textCornille, H. "Hierarchies of (1+1)-Dimensional Multispeed Discrete Boltzmann Model Equations." In Solitons and Chaos, 142–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84570-3_17.
Full textKawashima, Shuichi, and Shinya Nishibata. "Stationary Waves for the Discrete Boltzmann Equations in the Half Space." In Hyperbolic Problems: Theory, Numerics, Applications, 593–602. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8372-6_13.
Full textVedenyapin, Victor, Alexander Sinitsyn, and Eugene Dulov. "Discrete Models of Boltzmann Equation." In Kinetic Boltzmann, Vlasov and Related Equations, 183–93. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-12-387779-6.00010-7.
Full textVedenyapin, Victor, Alexander Sinitsyn, and Eugene Dulov. "Discrete Boltzmann Equation Models for Mixtures." In Kinetic Boltzmann, Vlasov and Related Equations, 211–26. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-12-387779-6.00012-0.
Full text"THE DISCRETE BOLTZMANN EQUATION MODELLING AND THERMODYNAMICS." In Series on Advances in Mathematics for Applied Sciences, 1–37. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814439350_0001.
Full textKawashima, Shuichi, and Yasushi Shizuta. "The Navier-Stokes Equation Associated with the Discrete Boltzmann Equation." In North-Holland Mathematics Studies, 15–30. Elsevier, 1989. http://dx.doi.org/10.1016/s0304-0208(08)70504-8.
Full textConference papers on the topic "Discrete Boltzmann equation"
Bernhoff, Niclas. "Discrete quantum Boltzmann equation." In 31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD31. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5119631.
Full textMajorana, Armando. "Deterministic numerical solutions to a semi-discrete Boltzmann equation." In 31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD31. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5119550.
Full textKAWASHIMA, Shuichi. "Asymptotic Behavior of Solutions to the Discrete Boltzmann Equation." In The Colloquium Euromech No. 267. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814503525_0004.
Full textLi, Like, Renwei Mei, and James F. Klausner. "Heat Transfer in Thermal Lattice Boltzmann Equation Method." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87990.
Full textCabannes, Henri. "The Discrete Boltzmann Equation : The Regular Plane Model with Four Velocities." In RAREFIED GAS DYNAMICS: 24th International Symposium on Rarefied Gas Dynamics. AIP, 2005. http://dx.doi.org/10.1063/1.1941514.
Full textMalkov, E. A., S. O. Poleshkin, and M. S. Ivanov. "Discrete velocity scheme for solving the Boltzmann equation with the GPGPU." In 28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4769532.
Full textGabetta, E., and R. Monaco. "THE DISCRETE BOLTZMANN EQUATION FOR GASES WITH BI-MOLECULAR CHEMICAL REACTIONS." In The Colloquium Euromech No. 267. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814503525_0003.
Full textAdzhiev, S. Z. "On One-dimensional Discrete Velocity Models of The Boltzmann Equation For Mixtures." In RAREFIED GAS DYNAMICS: 24th International Symposium on Rarefied Gas Dynamics. AIP, 2005. http://dx.doi.org/10.1063/1.1941524.
Full textChen, Leitao, Laura Schaefer, and Xiaofeng Cai. "An Accurate Unstructured Finite Volume Discrete Boltzmann Method." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87136.
Full textMorris, A. B., P. L. Varghese, D. B. Goldstein, and Takashi Abe. "Improvement of a Discrete Velocity Boltzmann Equation Solver With Arbitrary Post-Collision Velocities." In RARIFIED GAS DYNAMICS: Proceedings of the 26th International Symposium on Rarified Gas Dynamics. AIP, 2008. http://dx.doi.org/10.1063/1.3076521.
Full textReports on the topic "Discrete Boltzmann equation"
Prinja, A. K. Multigroup discrete ordinates solution of Boltzmann-Fokker-Planck equations and cross section library development of ion transport. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/106676.
Full text