Journal articles on the topic 'Discharge decomposition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Discharge decomposition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kuhno, Andrey Valentinovich, Leonid Mikhailovich Makal'skij, and Olga Mikhailovna Tsekhanovich. "Water purification from organic contaminants by avalanche streamer discharge." Samara Journal of Science 6, no. 1 (March 1, 2017): 46–51. http://dx.doi.org/10.17816/snv201761109.
Full textManukyan, Anna S., Mikael Belay Seyoum, and Vladimir V. Rybkin. "DECOMPOSITION OF ORGANIC DYES IN THEIR AQUEOUS SOLUTIONS UNDER ACTION OF ELECTRIC DISCHARGES OF ATMOSPHERIC PRESSURE." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 64, no. 3 (March 19, 2021): 4–12. http://dx.doi.org/10.6060/ivkkt.20216403.6339.
Full textBatukaev, Timur S., Igor V. Bilera, Galina V. Krashevskaya, Yuri A. Lebedev, and Nurlan A. Nazarov. "CO2 Decomposition in Microwave Discharge Created in Liquid Hydrocarbon." Plasma 6, no. 1 (February 27, 2023): 115–26. http://dx.doi.org/10.3390/plasma6010010.
Full textAdámková, Barbora, František Krčma, Stanislav Chudják, and Zdenka Kozáková. "Pinhole discharge decomposition of ethanol." Journal of Applied Physics 129, no. 14 (April 14, 2021): 143304. http://dx.doi.org/10.1063/5.0044149.
Full textHATAKEYAMA, Kiyomi, Shuji TANABE, Yuji HAYASHI, Hiroshige MATSUMOTO, and Hideo FUTAMI. "NOx decomposition by discharge plasma reactor." Journal of Advanced Science 13, no. 3 (2001): 459–62. http://dx.doi.org/10.2978/jsas.13.459.
Full textMcLarnon, C. R., and V. K. Mathur. "Nitrogen Oxide Decomposition by Barrier Discharge." Industrial & Engineering Chemistry Research 39, no. 8 (August 2000): 2779–87. http://dx.doi.org/10.1021/ie990754q.
Full textGazicki, Maciej, Artur Jachimowicz, Raimund Schallauer, Klaus Pirker, Wolfgang Fallmann, Franz Kohl, Fethi Olcaytug, and Gerald Urban. "A glow discharge decomposition of tetraethylgermanium." Journal of Applied Polymer Science 46 (1990): 137–51. http://dx.doi.org/10.1002/app.1990.070460008.
Full textWang, Jin-Yun, Guan-Guang Xia, Aimin Huang, Steven L. Suib, Yuji Hayashi, and Hiroshige Matsumoto. "CO2 Decomposition Using Glow Discharge Plasmas." Journal of Catalysis 185, no. 1 (July 1999): 152–59. http://dx.doi.org/10.1006/jcat.1999.2499.
Full textLi, Linao, and Xinlao Wei. "Suppression Method of Partial Discharge Interferences Based on Singular Value Decomposition and Improved Empirical Mode Decomposition." Energies 14, no. 24 (December 20, 2021): 8579. http://dx.doi.org/10.3390/en14248579.
Full textYavorsky, Victor, and Zenoviy Znak. "Hydrogen Sulfide Decomposition in Ultrahigh-Frequency Plasma." Chemistry & Chemical Technology 3, no. 4 (December 15, 2009): 309–14. http://dx.doi.org/10.23939/chcht03.04.309.
Full textIgnatiev, A. A., P. A. Ivanova, A. N. Ivanov, A. A. Gushchin, D. A. Shutov, and V. V. Rybkin. "Kinetics of Ibuprofen Degradation in Aqueous Solution by the Action of Direct-Current Glow Discharge in Air." Химия высоких энергий 57, no. 6 (November 1, 2023): 500–504. http://dx.doi.org/10.31857/s0023119323060050.
Full textZhang, Jianwei, Ge Hou, Han Wang, Yu Zhao, and Jinlin Huang. "Operation feature extraction of flood discharge structure based on improved variational mode decomposition and variance dedication rate." Journal of Vibration and Control 26, no. 3-4 (November 6, 2019): 229–40. http://dx.doi.org/10.1177/1077546319878542.
Full textRizun, A. R., T. D. Denisyuk, V. Yu Kononov, and A. N. Rachkov. "Electric discharge decomposition of metallurgical grade silicon." Surface Engineering and Applied Electrochemistry 48, no. 4 (July 2012): 389–91. http://dx.doi.org/10.3103/s1068375512040151.
Full textMłotek, Michał, Michalina Perron, and Krzysztof Krawczyk. "Ammonia Decomposition in a Gliding Discharge Plasma." Energy Technology 9, no. 12 (November 11, 2021): 2100677. http://dx.doi.org/10.1002/ente.202100677.
Full textHelfritch, D. J. "Pulsed corona discharge for hydrogen sulfide decomposition." IEEE Transactions on Industry Applications 29, no. 5 (1993): 882–86. http://dx.doi.org/10.1109/28.245710.
Full textChen, Lingen, Zhihui Xie, Fengrui Sun, and Qizheng Ye. "VOC DECOMPOSITION IN AIRFLOW BY PULSED DISCHARGE." Environmental Engineering and Management Journal 9, no. 7 (2010): 897–902. http://dx.doi.org/10.30638/eemj.2010.119.
Full textGotou, Toyokazu, Noboru Wada, Masato Kurahashi, Masaki Kuzumoto, and Akira Kitamura. "Decomposition of Halide Compounds by Nonequilibrium Discharge." Japanese Journal of Applied Physics 44, no. 11 (November 9, 2005): 8141–46. http://dx.doi.org/10.1143/jjap.44.8141.
Full textSavinov, Sergey Y., Hwaung Lee, Hyung Keun Song, and Byung-Ki Na. "The decomposition of CO2 in glow discharge." Korean Journal of Chemical Engineering 19, no. 4 (July 2002): 564–66. http://dx.doi.org/10.1007/bf02699296.
Full textKINOSHITA, Koichi, and Takaaki MORIMUNE. "Characteristics of CFC12 Decomposition by Corona Discharge." Proceedings of the Symposium on Environmental Engineering 2000.10 (2000): 254–57. http://dx.doi.org/10.1299/jsmeenv.2000.10.254.
Full textKINOSHITA, Koichi, and Takaaki MORIMUNE. "CFC12 Decomposition by DC Corona Discharge Process." Journal of the Japan Institute of Energy 80, no. 6 (2001): 409–18. http://dx.doi.org/10.3775/jie.80.409.
Full textFraser, Mark E., Daniel A. Fee, and Ronald S. Sheinson. "Decomposition of methane in an AC discharge." Plasma Chemistry and Plasma Processing 5, no. 2 (June 1985): 163–73. http://dx.doi.org/10.1007/bf00566212.
Full textSintsov S. V., Mansfeld D. A., Veselov A. P., Fokin A. P., Ananichev A. A., Glyavin M. Yu., and Vodopyanov A. V. "Decomposition of carbon dioxide in a discharge maintained by continuous focused sub-terahetz radiation at atmospheric pressure." Technical Physics Letters 49, no. 1 (2023): 44. http://dx.doi.org/10.21883/tpl.2023.01.55347.19398.
Full textArshad, Muhammad Yousaf, Muhammad Azam Saeed, Muhammad Wasim Tahir, Halina Pawlak-Kruczek, Anam Suhail Ahmad, and Lukasz Niedzwiecki. "Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor." Energies 16, no. 15 (August 7, 2023): 5835. http://dx.doi.org/10.3390/en16155835.
Full textFu, Lijun, Yanling Guan, Liang Zhang, and Jian Zhang. "Analysis of Suspended Potential Discharge Defects by SF6 Decomposition Products." IOP Conference Series: Earth and Environmental Science 898, no. 1 (October 1, 2021): 012009. http://dx.doi.org/10.1088/1755-1315/898/1/012009.
Full textWang, Ying, Parvin Kaur, Augustine Tuck Lee Tan, Rajveer Singh, Paul Choon Keat Lee, Stuart Victor Springham, Raju V. Ramanujan, and R. S. Rawat. "Iron oxide magnetic nanoparticles synthesized by atmospheric microplasmas." International Journal of Modern Physics: Conference Series 32 (January 2014): 1460343. http://dx.doi.org/10.1142/s2010194514603433.
Full textLebedev Yu. A., Golubev O. V., Batukaev T. S., and Maximov A. L. "Decomposition of CO-=SUB=-2-=/SUB=- in a barrier discharge in the presence of cerium oxide catalysts." Technical Physics Letters 49, no. 5 (2023): 4. http://dx.doi.org/10.21883/tpl.2023.05.56015.19521.
Full textAleksandrov, N. L., S. V. Dobkin, and A. M. Konchakov. "Catalytic Halocarbon Decomposition in a Microwave Post-discharge." Plasma Chemistry and Plasma Processing 15, no. 3 (September 1995): 529–43. http://dx.doi.org/10.1007/bf03651421.
Full textSATOH, Kohki. "Decomposition of Environmental Hazardous Substances by Discharge Plasma." Journal of The Institute of Electrical Engineers of Japan 131, no. 11 (2011): 745–47. http://dx.doi.org/10.1541/ieejjournal.131.745.
Full textKuroki, Tomoyuki, Tuyoshi Oishi, Toshiaki Yamamoto, and Masaaki Okubo. "Bromomethane Decomposition Using a Pulsed Dielectric Barrier Discharge." IEEE Transactions on Industry Applications 49, no. 1 (January 2013): 293–97. http://dx.doi.org/10.1109/tia.2012.2228612.
Full textKoinuma, Hideomi, Makoto Funabashi, Kohji Kishio, Masashi Kawasaki, Tsuneo Hirano, and Kazuo Fueki. "Electronic State and Glow Discharge Decomposition of Tetramethyldisilane." Japanese Journal of Applied Physics 25, Part 1, No. 12 (December 20, 1986): 1811–14. http://dx.doi.org/10.1143/jjap.25.1811.
Full textSeto, Takafumi, Soon-Bark Kwon, Makoto Hirasawa, and Akira Yabe. "Decomposition of Toluene with Surface-Discharge Microplasma Device." Japanese Journal of Applied Physics 44, no. 7A (July 8, 2005): 5206–10. http://dx.doi.org/10.1143/jjap.44.5206.
Full textZeng, Fuping, Zhicheng Lei, Xu Yang, Ju Tang, Qiang Yao, and Yulong Miao. "Evaluating DC Partial Discharge With SF6 Decomposition Characteristics." IEEE Transactions on Power Delivery 34, no. 4 (August 2019): 1383–92. http://dx.doi.org/10.1109/tpwrd.2019.2900508.
Full textIndarto, Antonius. "Decomposition of dichlorobenzene in a dielectric barrier discharge." Environmental Technology 33, no. 6 (October 21, 2011): 663–66. http://dx.doi.org/10.1080/09593330.2011.587026.
Full textTang, Junwang, Tao Zhang, Lei Ma, and Ning Li. "Direct Decomposition of NO Activated by Microwave Discharge." Industrial & Engineering Chemistry Research 42, no. 24 (November 2003): 5993–99. http://dx.doi.org/10.1021/ie0304208.
Full textPetrova, O. V., P. I. Porshnev, and S. A. Zhdanok. "Possibility of methane decomposition in a gas discharge." Journal of Engineering Physics and Thermophysics 71, no. 6 (November 1998): 979–86. http://dx.doi.org/10.1007/bf02681451.
Full textNa, Byung-Ki, Jae-Wook Choi, Hwaung Lee, and Hyung Keun Song. "Decomposition of tetrafluorocarbon in dielectric barrier discharge reactor." Korean Journal of Chemical Engineering 19, no. 6 (November 2002): 917–20. http://dx.doi.org/10.1007/bf02707211.
Full textYe, Zhaolian, Jie Zhao, Hong ying Huang, Fei Ma, and Renxi Zhang. "Decomposition of dimethylamine gas with dielectric barrier discharge." Journal of Hazardous Materials 260 (September 2013): 32–39. http://dx.doi.org/10.1016/j.jhazmat.2013.04.035.
Full textSobczyk, Arkadiusz T., and Anatol Jaworek. "Carbon Microstructures Synthesis in Low Temperature Plasma Generated by Microdischarges." Applied Sciences 11, no. 13 (June 23, 2021): 5845. http://dx.doi.org/10.3390/app11135845.
Full textCho, Yong Sung, Tae Yoon Hong, Young Woo Youn, Jong Ho Sun, and Se-Hee Lee. "Study on the Correlation between Partial Discharge Energy and SF6 Decomposition Gas Generation." Energies 13, no. 18 (September 7, 2020): 4655. http://dx.doi.org/10.3390/en13184655.
Full textTsakiri, Katerina, Antonios Marsellos, and Stelios Kapetanakis. "Artificial Neural Network and Multiple Linear Regression for Flood Prediction in Mohawk River, New York." Water 10, no. 9 (August 29, 2018): 1158. http://dx.doi.org/10.3390/w10091158.
Full textHe, Yongsheng, Shiling Zhang, Zongxiang Lu, and Dai Liangjun. "Research on Joint Sensing Technology for Vibration and Dielectric Spectrum of Power Equipment in the Context of New Power Systems." Journal of Physics: Conference Series 2735, no. 1 (April 1, 2024): 012008. http://dx.doi.org/10.1088/1742-6596/2735/1/012008.
Full textBărbulescu, Alina, and Nayeemuddin Mohammed. "Study of the River Discharge Alteration." Water 16, no. 6 (March 8, 2024): 808. http://dx.doi.org/10.3390/w16060808.
Full textKang, Myung Soo, Gihyeon Yu, Jaeuk Shin, and Jungho Hwang. "Collection and decomposition of oil mist via corona discharge and surface dielectric barrier discharge." Journal of Hazardous Materials 411 (June 2021): 125038. http://dx.doi.org/10.1016/j.jhazmat.2021.125038.
Full textNakagawa, Yoshiro, Singo Adachi, and Akito Kohchi. "Decomposition of Chlorofluorocarbon by Pulse High-Current Discharge and Fast Burning through Spark Discharge." Japanese Journal of Applied Physics 35, Part 1, No. 5A (May 15, 1996): 2808–13. http://dx.doi.org/10.1143/jjap.35.2808.
Full textJu Tang, Fan Liu, Xiaoxing Zhang, Qinghong Meng, and Jiabin Zhou. "Partial discharge recognition through an analysis of SF6 decomposition products part 1: decomposition characteristics of SF6 under four different partial discharges." IEEE Transactions on Dielectrics and Electrical Insulation 19, no. 1 (February 2012): 29–36. http://dx.doi.org/10.1109/tdei.2012.6148499.
Full textIbrahim, Visa Musa. "Recognition of Protrusion Defect Fault in Gas Insulated Switchgear Base on SF6 Decomposition Product." International Journal of Advanced Research in Computer Science and Software Engineering 8, no. 1 (January 30, 2018): 131. http://dx.doi.org/10.23956/ijarcsse.v8i1.545.
Full textSun, Wei-Feng, Wen Kwang Chern, John Chok You Chan, and Zhong Chen. "A Reactive Molecular Dynamics Study on Crosslinked Epoxy Resin Decomposition under High Electric Field and Thermal Aging Conditions." Polymers 15, no. 3 (February 2, 2023): 765. http://dx.doi.org/10.3390/polym15030765.
Full textDiono, Wahyu, Siti Machmudah, Hideki Kanda, Yaping Zhao, and Motonobu Goto. "Pulsed Discharge Plasma in High-Pressure Environment for Water Pollutant Degradation and Nanoparticle Synthesis." Plasma 4, no. 2 (June 4, 2021): 309–31. http://dx.doi.org/10.3390/plasma4020021.
Full textHamdan, Ahmad, and Luc Stafford. "A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids." Nanomaterials 12, no. 20 (October 14, 2022): 3603. http://dx.doi.org/10.3390/nano12203603.
Full textBendahan, Rdmy, Kan-ichi Fujii, and M. Higashi. "Nitrogen Oxides Decomposition Using A Dielectric Barrier Discharge Reactor." IEEJ Transactions on Fundamentals and Materials 118, no. 4 (1998): 380–86. http://dx.doi.org/10.1541/ieejfms1990.118.4_380.
Full text