Academic literature on the topic 'Dirichlet boundary condition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dirichlet boundary condition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dirichlet boundary condition"
Cao, Shunhua, and Stewart Greenhalgh. "Attenuating boundary conditions for numerical modeling of acoustic wave propagation." GEOPHYSICS 63, no. 1 (January 1998): 231–43. http://dx.doi.org/10.1190/1.1444317.
Full textPark, I. Y. "Quantum “violation” of Dirichlet boundary condition." Physics Letters B 765 (February 2017): 260–64. http://dx.doi.org/10.1016/j.physletb.2016.12.026.
Full textDiyab, Farah, and B. Surender Reddy. "Comparison of Laplace Beltrami Operator Eigenvalues on Riemannian Manifolds." European Journal of Mathematics and Statistics 3, no. 5 (October 23, 2022): 55–60. http://dx.doi.org/10.24018/ejmath.2022.3.5.143.
Full textTurmetov, B. Kh, and V. V. Karachik. "NEUMANN BOUNDARY CONDITION FOR A NONLOCAL BIHARMONIC EQUATION." Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics" 14, no. 2 (2022): 51–58. http://dx.doi.org/10.14529/mmph220205.
Full textCorrêa, Francisco Julio S. A., and Joelma Morbach. "A Dirichlet problem under integral boundary condition." Journal of Mathematical Analysis and Applications 478, no. 1 (October 2019): 1–13. http://dx.doi.org/10.1016/j.jmaa.2019.04.030.
Full textAmrouche, Cherif, and Šárka Nečasová. "Laplace equation in the half-space with a nonhomogeneous Dirichlet boundary condition." Mathematica Bohemica 126, no. 2 (2001): 265–74. http://dx.doi.org/10.21136/mb.2001.134013.
Full textYosaf, Asma, Shafiq Ur Rehman, Fayyaz Ahmad, Malik Zaka Ullah, and Ali Saleh Alshomrani. "Eighth-Order Compact Finite Difference Scheme for 1D Heat Conduction Equation." Advances in Numerical Analysis 2016 (May 16, 2016): 1–12. http://dx.doi.org/10.1155/2016/8376061.
Full textHayasida, Kazuya, and Masao Nakatani. "On the Dirichlet problem of prescribed mean curvature equations without H-convexity condition." Nagoya Mathematical Journal 157 (2000): 177–209. http://dx.doi.org/10.1017/s0027763000007248.
Full textAlgazin, O. D., and A. V. Kopaev. "A Mixed Boundary Value Problem for the Laplace Equation in a semi-infinite Layer." Mathematics and Mathematical Modeling, no. 5 (February 6, 2021): 1–12. http://dx.doi.org/10.24108/mathm.0520.0000229.
Full textYAKUBOV, YAKOV. "COMPLETENESS OF ROOT FUNCTIONS AND ELEMENTARY SOLUTIONS OF THE THERMOELASTICITY SYSTEM." Mathematical Models and Methods in Applied Sciences 05, no. 05 (August 1995): 587–98. http://dx.doi.org/10.1142/s0218202595000346.
Full textDissertations / Theses on the topic "Dirichlet boundary condition"
Yang, Xue. "Neumann problems for second order elliptic operators with singular coefficients." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/neumann-problems-for-second-order-elliptic-operators-with-singular-coefficients(2e65b780-df58-4429-89df-6d87777843c8).html.
Full textCheaytou, Rima. "Etude des méthodes de pénalité-projection vectorielle pour les équations de Navier-Stokes avec conditions aux limites ouvertes." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4715.
Full textMotivated by solving the incompressible Navier-Stokes equations with open boundary conditions, this thesis studies the Vector Penalty-Projection method denoted VPP, which is a splitting method in time. We first present a literature review of the projection methods addressing the issue of the velocity-pressure coupling in the incompressible Navier-Stokes system. First, we focus on the case of Dirichlet conditions on the entire boundary. The numerical tests show a second-order convergence in time for both the velocity and the pressure. They also show that the VPP method is fast and cheap in terms of number of iterations at each time step. In addition, we established for the Stokes problem optimal error estimates for the velocity and pressure and the numerical experiments are in perfect agreement with the theoretical results. However, the incompressibility constraint is not exactly equal to zero and it scales as O(varepsilondelta t) where $varepsilon$ is a penalty parameter chosen small enough and delta t is the time step. Moreover, we deal with the natural outflow boundary condition. Three types of outflow boundary conditions are presented and numerically tested for the projection step. We perform quantitative comparisons of the results with those obtained by other methods in the literature. Besides, a theoretical study of the VPP method with outflow boundary conditions is stated and the numerical tests prove to be in good agreement with the theoretical results. In the last chapter, we focus on the numerical study of the VPP scheme with a nonlinear open artificial boundary condition modelling a singular load for the unsteady incompressible Navier-Stokes problem
Choulli, Mourad. "Identifiabilite d'un parametre dans une equation parabolique non lineaire monodimensionnelle." Toulouse 3, 1987. http://www.theses.fr/1987TOU30245.
Full textMatsui, Kazunori. "Asymptotic analysis of an ε-Stokes problem with Dirichlet boundary conditions." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-71938.
Full textSTINT (DD2017-6936) "Mathematics Bachelor Program for Efficient Computations"
Couture, Chad. "Steady States and Stability of the Bistable Reaction-Diffusion Equation on Bounded Intervals." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37110.
Full textPERROTTA, Antea. "Differential Formulation coupled to the Dirichlet-to-Neumann operator for scattering problems." Doctoral thesis, Università degli studi di Cassino, 2020. http://hdl.handle.net/11580/75845.
Full textMarco, Alacid Onofre. "Structural Shape Optimization Based On The Use Of Cartesian Grids." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/86195.
Full textLa competitividad en la industria actual impone la necesidad de generar nuevos y mejores diseños. El tradicional procedimiento de prueba y error, usado a menudo para el diseño de componentes mecánicos, ralentiza el proceso de diseño y produce diseños subóptimos, por lo que se necesitan nuevos enfoques para obtener una ventaja competitiva. Con el desarrollo del Método de los Elementos Finitos (MEF) en el campo de la ingeniería en la década de 1970, la optimización de forma estructural surgió como un área de aplicación prometedora. El entorno industrial cada vez más exigente implica ciclos cada vez más cortos de desarrollo de nuevos productos. Por tanto, la naturaleza iterativa de los procesos de optimización de forma, que supone el análisis de gran cantidad de geometrías (para las se han de usar modelos numéricos de gran tamaño a fin de limitar el efecto de los errores intrínsecamente asociados a las técnicas numéricas), puede incluso disuadir del uso de estas técnicas. Esta Tesis se centra en la formulación de una metodología 3D basada en el Cartesian-grid Finite Element Method (cgFEM) como herramienta para un análisis numérico eficiente y robusto. Esta metodología pertenece a la categoría de técnicas de discretización Immersed Boundary donde el concepto clave es extender el problema de análisis estructural a un dominio de aproximación, que contiene la frontera del dominio físico, cuya discretización (mallado) resulte sencilla. El uso de mallados cartesianos proporciona una plataforma natural para la optimización de forma estructural porque el dominio numérico está separado del modelo físico, que podrá cambiar libremente durante el procedimiento de optimización sin alterar la discretización subyacente. Otro argumento positivo reside en el hecho de que la generación de malla se convierte en una tarea trivial. La discretización del dominio numérico y su manipulación, en coalición con la eficiencia de una estructura jerárquica de datos, pueden ser explotados para ahorrar coste computacional. Sin embargo, estas ventajas pueden ser cuestionadas por varios problemas numéricos. Básicamente, el esfuerzo computacional se ha desplazado. Del uso de costosos algoritmos de mallado nos movemos hacia el uso de, por ejemplo, esquemas de integración numérica elaborados para poder capturar la discrepancia entre la frontera del dominio geométrico y la malla de elementos finitos que lo embebe. Para ello, utilizamos, por un lado, una formulación de estabilización para imponer condiciones de contorno y, por otro lado, hemos desarrollado nuevas técnicas para poder captar la representación exacta de los modelos geométricos. Para completar la implementación de un método de optimización de forma estructural se usa una formulación adjunta para derivar las sensibilidades de diseño requeridas por los algoritmos basados en gradiente. Las derivadas no son sólo variables requeridas para el proceso, sino una poderosa herramienta para poder proyectar información entre diferentes diseños o, incluso, proyectar la información para crear mallas h-adaptadas sin pasar por un proceso completo de refinamiento h-adaptativo. Las mejoras propuestas se reflejan en los ejemplos numéricos presentados en esta Tesis. Estos análisis muestran claramente el comportamiento superior de la tecnología cgFEM en cuanto a precisión numérica y eficiencia computacional. En consecuencia, el enfoque cgFEM se postula como una herramienta adecuada para la optimización de forma.
Actualment, amb la competència existent en la industria, s'imposa la necessitat de generar nous i millors dissenys . El tradicional procediment de prova i error, que amb freqüència es fa servir pel disseny de components mecànics, endarrereix el procés de disseny i produeix dissenys subòptims, pel que es necessiten nous enfocaments per obtindre avantatge competitiu. Amb el desenvolupament del Mètode dels Elements Finits (MEF) en el camp de l'enginyeria en la dècada de 1970, l'optimització de forma estructural va sorgir com un àrea d'aplicació prometedora. No obstant això, a causa de la natura iterativa dels processos d'optimització de forma, la manipulació dels models numèrics en grans quantitats, junt amb l'error de discretització dels mètodes numèrics, pot fins i tot dissuadir de l'ús d'aquestes tècniques (o d'explotar tot el seu potencial), perquè al mateix temps els cicles de desenvolupament de nous productes s'estan acurtant. Esta Tesi se centra en la formulació d'una metodologia 3D basada en el Cartesian-grid Finite Element Method (cgFEM) com a ferramenta per una anàlisi numèrica eficient i sòlida. Esta metodologia pertany a la categoria de tècniques de discretització Immersed Boundary on el concepte clau és expandir el problema d'anàlisi estructural a un domini d'aproximació fàcil de mallar que conté la frontera del domini físic. L'utilització de mallats cartesians proporciona una plataforma natural per l'optimització de forma estructural perquè el domini numèric està separat del model físic, que podria canviar lliurement durant el procediment d'optimització sense alterar la discretització subjacent. A més, un altre argument positiu el trobem en què la generació de malla es converteix en una tasca trivial, ja que la discretització del domini numèric i la seua manipulació, en coalició amb l'eficiència d'una estructura jeràrquica de dades, poden ser explotats per estalviar cost computacional. Tot i això, estos avantatges poden ser qüestionats per diversos problemes numèrics. Bàsicament, l'esforç computacional s'ha desplaçat. De l'ús de costosos algoritmes de mallat ens movem cap a l'ús de, per exemple, esquemes d'integració numèrica elaborats per poder capturar la discrepància entre la frontera del domini geomètric i la malla d'elements finits que ho embeu. Per això, fem ús, d'una banda, d'una formulació d'estabilització per imposar condicions de contorn i, d'un altra, desevolupem noves tècniques per poder captar la representació exacta dels models geomètrics Per completar la implementació d'un mètode d'optimització de forma estructural es fa ús d'una formulació adjunta per derivar les sensibilitats de disseny requerides pels algoritmes basats en gradient. Les derivades no són únicament variables requerides pel procés, sinó una poderosa ferramenta per poder projectar informació entre diferents dissenys o, fins i tot, projectar la informació per crear malles h-adaptades sense passar per un procés complet de refinament h-adaptatiu. Les millores proposades s'evidencien en els exemples numèrics presentats en esta Tesi. Estes anàlisis mostren clarament el comportament superior de la tecnologia cgFEM en tant a precisió numèrica i eficiència computacional. Així, l'enfocament cgFEM es postula com una ferramenta adient per l'optimització de forma.
Marco Alacid, O. (2017). Structural Shape Optimization Based On The Use Of Cartesian Grids [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86195
TESIS
Coco, Armando. "Finite-Difference Ghost-Cell Multigrid Methods for Elliptic problems with Mixed Boundary Conditions and Discontinuous Coefficients." Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1107.
Full textEschke, Andy. "Analytical solution of a linear, elliptic, inhomogeneous partial differential equation with inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions for a special rotationally symmetric problem of linear elasticity." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-149965.
Full textJunior, Vanderley Alves Ferreira. "Problemas de valores de contorno envolvendo o operador biharmônico." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032013-083331/.
Full textWe study the boundary value problem {\'DELTA POT. 2\' u = f in \'OMEGA\', \'BETA\' u = 0 in \'PARTIAL OMEGA\', in a bounded open \'OMEGA\'\'THIS CONTAINED\' \'R POT. N\' , under different boundary conditions. The questions of existence and positivity of solutions for this problem are addressed with Dirichlet, Navier and Steklov boundary conditions. We deduce natural boundary conditions through the study of a model for a plate with static load. We also study properties of the first eigenvalue of \'DELTA POT. 2\' and the semi-linear problem { \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) in \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 in \'PARTIUAL\' \'OMEGA\', for non-linearities like F(t) = \'l t l POT. p-1\', p \' DIFFERENT\' t, p > 0. For such problem we study existence and non-existence of solutions and its positivity
Books on the topic "Dirichlet boundary condition"
J, Liandrat, and Institute for Computer Applications in Science and Engineering., eds. On the effective construction of compactly supported wavelets satisfying homogenous boundary conditions on the interval. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.
Find full textAdi, Ditkowski, and Institute for Computer Applications in Science and Engineering., eds. Multi-dimensional asymptotically stable 4th order accurate schemes for the diffusion equation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.
Find full textAdi, Ditkowski, and Institute for Computer Applications in Science and Engineering., eds. Multi-dimensional asymptotically stable 4th order accurate schemes for the diffusion equation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.
Find full textAdi, Ditkowski, and Institute for Computer Applications in Science and Engineering., eds. Multi-dimensional asymptotically stable 4th order accurate schemes for the diffusion equation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.
Find full textMann, Peter. The Stationary Action Principle. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0007.
Full textElliptic Carleman Estimates and Applications to Stabilization and Controllability, Volume I: Dirichlet Boundary Conditions on Euclidean Space. Springer International Publishing AG, 2022.
Find full textMulti-dimensional asymptotically stable 4th order accurate schemes for the diffusion equation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.
Find full textBounded error schemes for the wave equation on complex domains. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Find full textEdmunds, D. E., and W. D. Evans. Second-Order Differential Operators on Arbitrary Open Sets. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0007.
Full textBook chapters on the topic "Dirichlet boundary condition"
Bianchi, Massimo, Roland Allen, Antonio Mondragon, Alexander Gavrilik, John Howie, Martin Schlichenmaier, Martin Schlichenmaier, et al. "Dirichlet-Neumann Boundary Condition." In Concise Encyclopedia of Supersymmetry, 130. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_162.
Full textMotreanu, Dumitru, and Zdzisław Naniewicz. "Semilinear Hemivariational Inequalities with Dirichlet Boundary Condition." In Advances in Mechanics and Mathematics, 89–110. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-4435-4_2.
Full textGrote, Marcus J., and Christoph Kirsch. "Dirichlet-to-Neumann Boundary Condition for Multiple Scattering Problems." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 263–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_42.
Full textPiasecki, Tomasz, and Milan Pokorný. "Steady Compressible Navier–Stokes–Fourier System with Slip Boundary Condition for the Velocity and Dirichlet Boundary Condition for the Temperature." In Fluids Under Control, 217–39. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27625-5_8.
Full textPokorný, Milan. "Steady Compressible Navier–Stokes–Fourier Equations with Dirichlet Boundary Condition for the Temperature." In Collected Papers in Honor of Yoshihiro Shibata, 335–50. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19252-4_14.
Full textSchmitz, Hermann. "A collocation method for potential problems with a mixed Dirichlet-Signorini boundary condition." In Teubner-Texte zur Mathematik, 194–200. Wiesbaden: Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-663-11577-9_20.
Full textEzhak, Svetlana. "On Estimates for the First Eigenvalue of the Sturm–Liouville Problem with Dirichlet Boundary Conditions and Integral Condition." In Differential and Difference Equations with Applications, 387–94. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7333-6_32.
Full textDroniou, Jérôme, Robert Eymard, Thierry Gallouët, Cindy Guichard, and Raphaèle Herbin. "Dirichlet Boundary Conditions." In Mathématiques et Applications, 17–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79042-8_2.
Full textFeltrin, Guglielmo. "Dirichlet Boundary Conditions." In Positive Solutions to Indefinite Problems, 3–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_1.
Full textMotreanu, Dumitru, Viorica Venera Motreanu, and Nikolaos Papageorgiou. "Nonlinear Elliptic Equations with Dirichlet Boundary Conditions." In Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, 303–85. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9323-5_11.
Full textConference papers on the topic "Dirichlet boundary condition"
Qiaoling Jiang, Weige Wu, and Jianxin Liu. "Monte Carlo method for Dirichlet boundary condition of multimedia field." In 2009 International Conference on Microwave Technology and Computational Electromagnetics (ICMTCE 2009). IET, 2009. http://dx.doi.org/10.1049/cp.2009.1356.
Full textAshyralyev, Allaberen, Kadriye Tuba Turkcan, and Mehmet Emir Koksal. "Numerical solutions of telegraph equations with the Dirichlet boundary condition." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4959669.
Full textYusop, Nur Syaza Mohd, and Nurul Akmal Mohamed. "The system of equations for mixed BVP with one Dirichlet boundary condition and three Neumann boundary conditions." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EDUCATION, MATHEMATICS AND SCIENCE 2016 (ICEMS2016) IN CONJUNCTION WITH 4TH INTERNATIONAL POSTGRADUATE CONFERENCE ON SCIENCE AND MATHEMATICS 2016 (IPCSM2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4983857.
Full textYao, Guangfa. "A Simple Immersed Boundary Method for Modeling Forced Convection Heat Transfer." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10236.
Full textJablonski, Pawel. "Approaches to mixed Dirichlet-Neumann boundary condition in the method of separation of variables." In 2019 Applications of Electromagnetics in Modern Techniques and Medicine (PTZE). IEEE, 2019. http://dx.doi.org/10.23919/ptze.2019.8781727.
Full textJunhong, Liu, Liu Wenxue, Li Lifeng, and Jin Qi. "Oscillation criteria for a class of nonlinear impulsive parabolic system under Dirichlet boundary condition." In 2015 International Conference on Advanced Mechatronic Systems (ICAMechS). IEEE, 2015. http://dx.doi.org/10.1109/icamechs.2015.7287129.
Full textDanarwindu, Ghiffari Ahnaf, and Nikenasih Binatari. "Green's function for convection diffusion equation with Dirichlet boundary condition using separation variable's method." In PROCEEDINGS OF THE 4TH INTERNATIONAL SEMINAR ON INNOVATION IN MATHEMATICS AND MATHEMATICS EDUCATION (ISIMMED) 2020: Rethinking the role of statistics, mathematics and mathematics education in society 5.0: Theory, research, and practice. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0108795.
Full textSurmont, Florian, and Damien Coache. "Investigation on the Shooting Method Ability to Solve Different Mooring Lines Boundary Condition Types." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77563.
Full textAhmad, Muhammad Jalil, and Korhan Günel. "Numerical Solution of Dirichlet Boundary Value Problems using Mesh Adaptive Direct Search Optimization." In International Students Science Congress. Izmir International Guest Student Association, 2021. http://dx.doi.org/10.52460/issc.2021.030.
Full textAtassi, Hafiz M., and Romeo F. Susan-Resiga. "Parallel Computation of Harmonic Waves Using Domain Decomposition: Part 1 — General Formulation." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0532.
Full textReports on the topic "Dirichlet boundary condition"
Babuska, Ivo, Victor Nistor, and Nicolae Tarfulea. Approximate Dirichlet Boundary Conditions in the Generalized Finite Element Method (PREPRINT). Fort Belvoir, VA: Defense Technical Information Center, February 2006. http://dx.doi.org/10.21236/ada478502.
Full textBabuska, Ivo, B. Guo, and Manil Suri. Implementation of Nonhomogeneous Dirichlet Boundary Conditions in the p- Version of the Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada207799.
Full text