Academic literature on the topic 'Directed graphs'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Directed graphs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Directed graphs"

1

Zelinka, Bohdan. "Small directed graphs as neighbourhood graphs." Czechoslovak Mathematical Journal 38, no. 2 (1988): 269–73. http://dx.doi.org/10.21136/cmj.1988.102221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zelinka, Bohdan. "Distances between directed graphs." Časopis pro pěstování matematiky 112, no. 4 (1987): 359–67. http://dx.doi.org/10.21136/cpm.1987.108565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bauer, Frank. "Normalized graph Laplacians for directed graphs." Linear Algebra and its Applications 436, no. 11 (June 2012): 4193–222. http://dx.doi.org/10.1016/j.laa.2012.01.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de Graaf, M., A. Schrijver, and P. D. Seymour. "Directed triangles in directed graphs." Discrete Mathematics 110, no. 1-3 (December 1992): 279–82. http://dx.doi.org/10.1016/0012-365x(92)90719-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Graaf, Maurits. "Directed triangles in directed graphs." Discrete Mathematics 280, no. 1-3 (April 2004): 219–23. http://dx.doi.org/10.1016/j.disc.2003.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schwarz, Štefan. "Common consequents in directed graphs." Czechoslovak Mathematical Journal 35, no. 2 (1985): 212–47. http://dx.doi.org/10.21136/cmj.1985.102012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zelinka, Bohdan. "Circular distance in directed graphs." Mathematica Bohemica 122, no. 2 (1997): 113–19. http://dx.doi.org/10.21136/mb.1997.125917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alsardary, Salar Y. "A note on small directed graphs as neighborhood graphs." Czechoslovak Mathematical Journal 44, no. 4 (1994): 577–78. http://dx.doi.org/10.21136/cmj.1994.128492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Quinn, Christopher J., Negar Kiyavash, and Todd P. Coleman. "Directed Information Graphs." IEEE Transactions on Information Theory 61, no. 12 (December 2015): 6887–909. http://dx.doi.org/10.1109/tit.2015.2478440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manoussakis, Yannis. "Directed hamiltonian graphs." Journal of Graph Theory 16, no. 1 (March 1992): 51–59. http://dx.doi.org/10.1002/jgt.3190160106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Directed graphs"

1

Myers, Joseph Samuel. "Extremal theory of graph minors and directed graphs." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marr, Alison M. "Labelings of directed graphs /." Available to subscribers only, 2007. http://proquest.umi.com/pqdweb?did=1362527421&sid=22&Fmt=2&clientId=1509&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Counts, Jared B. "Knitting with directed graphs." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119547.

Full text
Abstract:
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 67-68).
Knitting has historically been communicated by its means of construction. For hand knitting, this is typically a list of instructions or a pictorial grid with knitting symbols. For machine knitting, a similar pictorial grid is used to express needle-level instructions. However, these formats suffer by the nature of their tight coupling with the method used to construct the garments they represent. Alternatively, we use Knit Meshes, which represent knitting structures by their geometry separate from a directed graph description of their topology. This thesis presents an algorithm that can generate a natural, deformed two-dimensional layout of Knit Meshes as well as a conversion pipeline that converts written hand knitting instructions to and from Knit Meshes and an algorithm that converts certain Knit Meshes into knitting machine code.
by Jared B. Counts.
M. Eng.
APA, Harvard, Vancouver, ISO, and other styles
4

Townsend, Timothy Duncan. "Extremal problems on graphs, directed graphs and hypergraphs." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6453/.

Full text
Abstract:
This thesis is concerned with extremal problems on graphs and similar structures. We first study degree conditions in uniform hypergraphs that force matchings of various sizes. Our main result in this area improves bounds of Markstrom and Rucinski on the minimum d-degree which forces a perfect matching in a k-uniform hypergraph on n vertices. We then study connectivity conditions in tournaments that ensure the existence of partitions of the vertex set that satisfy various properties. In 1982 Thomassen asked whether every sufficiently strongly connected tournament T admits a partition of its vertex set into t vertex classes such that the subtournament induced on T by each class is strongly k-connected. Our main result in this area implies an affirmative answer to this question. Finally we investigate the typical structure of graphs and directed graphs with some forbidden subgraphs. We answer a question of Cherlin by finding the typical structure of triangle-free oriented graphs. Moreover, our results generalise to forbidden transitive tournaments and forbidden oriented cycles of any order, and also apply to digraphs. We also determine, for all k > 5, the typical structure of graphs that do not contain an induced 2k-cycle. This verifies a conjecture of Balogh and Butterfield.
APA, Harvard, Vancouver, ISO, and other styles
5

Kelly, Luke Tristian. "On cycles in directed graphs." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/940/.

Full text
Abstract:
The main results of this thesis are the following. We show that for each alpha > 0 every sufficiently large oriented graph G with minimum indegree and minimum outdegree at least 3 |G| / 8 + alpha |G| contains a Hamilton cycle. This gives an approximate solution to a problem of Thomassen. Furthermore, answering completely a conjecture of Haggkvist and Thomason, we show that we get every possible orientation of a Hamilton cycle. We also deal extensively with short cycles, showing that for each l > 4 every sufficiently large oriented graph G with minimum indegree and minimum outdegree at least |G| / 3 + 1 contains an l-cycle. This is best possible for all those l > 3 which are not divisible by 3. Surprisingly, for some other values of l, an l-cycle is forced by a much weaker minimum degree condition. We propose and discuss a conjecture regarding the precise minimum degree which forces an l-cycle (with l > 3 divisible by 3) in an oriented graph. We also give an application of our results to pancyclicity.
APA, Harvard, Vancouver, ISO, and other styles
6

Brunner, Wolfgang. "Cyclic level drawings of directed graphs /." kostenfrei, 2010. http://www.opus-bayern.de/uni-passau/volltexte/2010/1796/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Garcia, Gasulla Dario. "Link prediction in large directed graphs." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/299070.

Full text
Abstract:
The first chapter introduces an approach to machine learning (ML) were data is understood as a network of connected entities. This strategy seeks inter-entity information for knowledge discovery, in contrast with traditional intra-entity approaches based on instances and their features. We discuss the importance of this connectivist ML (which we refer to as graph mining) in the current context where large, topology-based data sets have been made available. Chapter ends by introducing the Link Prediction (LP) problem, together with its current computational and performance limitations. The second chapter discusses early contributions to graph mining, and introduces problems frequently tackled through this paradigm. Later the chapter focuses on the state-of-the-art of LP. It presents three different approaches to the problem of finding links in a relational set, and argues about the importance of the most computationally scalable one: similarity-based algorithms. It categorizes similarity-based algorithms in three types of LP scores. For the most scalable type, local similarity-based algorithms, the chapter identifies and formally describes the most competitive proposals according to the bibliography. Chapter three analyses the LP problem, partly as a classic binary classification problem. A list of graph properties such as directionality, weights and time are discussed in the context of LP. Follows a formal time and space complexity analysis of similarity-based scores of LP. The chapter ends with an study of the class imbalance found in LP problems. In chapter four a novel similarity-based score of LP is introduced. The chapter first elaborates on the importance of hierarchies for representing knowledge through directed graphs. Several modifications to the proposed score are also defined. This chapter presents a modified version of the most competitive undirected scores of LP, to adapt them to directed graphs. The evaluation methodologies of LP are analyzed in the fifth chapter. It starts by discussing the problem of evaluating domains with a huge class imbalance, identifying the most appropriate methodologies for it. A modification of the most appropriate evaluation methodology according to the bibliography is presented, with the goal of focusing on relevant predictions. Follows a discussion on the faithful estimation of the precision of predictors. Chapter six describes the graphs used for score evaluation, as well as how data was transformed into a directed graph. Reasons on why these particular domains were chosen are given, making a special case of webgraphs and their well known relation with hierarchies. The most basic properties of each resultant graph are shown. Tests performed are presented in chapter seven. The three most competitive LP scores currently available are tested among themselves, and against a proposed version of those same scores for directed graphs. Our proposed score and its modifications are tested against the scores obtaining the best results in the previous tests. The case of LP in webgraphs is considered separately, testing six different webgraphs. The chapter ends with a discussion on the limitations of this formal analysis, showing examples of predictions obtained. Chapter eight includes the computational aspects of the work done. It starts with a discussion on the importance of memory management for determining the computational cost of LP algorithms. A proposal on how to reduce this cost through precision reduction is presented. Follows a section focused on the parallelization of code, which includes two different implementations on one graph-specific programming model (Pregel) and on one generic programming model (OpenMP). The chapter ends with a specification of the computational resources used for the tests done. The conclusions of this thesis proposal are presented in nine. Chapter ten contains several future lines of work.
El primer capítol introdueix una perspectiva de l'aprenentatge automàtic on les dades s'entén com una xarxa d'entitats connectades. Aquesta estratègia es centra en les relacions entre entitats per aprendre, en contrast amb les solucions tradicionals basades en instancies i els seus atributs. Discutim sobre la importància d'aquesta perspectiva connectivista (a la que ens referim com mineria de grafs) en el context actual on grans conjunts de dades basats en xarxes estan apareixent. El capítol finalitza amb la presentació del problema de Predicció d'Arestes (PA), junt amb una primera anàlisi de les seves limitacions actuals. El segon capítol presenta les primeres contribucions a la mineria de grafs, introduint problemes típicament solucionats mitjançant aquest paradigma. El capítol es centra en l'estat de l'art de PA. Presenta tres solucions diferents per al problema i argumenta la importància del més computacionalment escalable: els algoritmes basats en similitud. Categoritza aquests en tres tipus, i per als més escalables d'aquests, els algoritmes locals, s'identifica i es descriu formalment les propostes més competitives d'acord amb la bibliografia. El tercer capítol analitza el problema de PA, inicialment com a problema de classificació binari. Una llista de propietats de grafs són discutides en el context de la PA, com la direccionalitat o els pesos. Segueix una anàlisi del cost computacional en temps com en espai, dels algorismes basats en similitud. El capítol finalitza amb un estudi del desbalanceig de classes, freqüent en la PA. Al capítol quatre es presenta un nou algorisme basat en similitud per la PA. El capítol elabora sobre la importància de les jerarquies a la representació del coneixement a través de grafs dirigits. Varies modificacions es proposen per al nou algorisme. Aquest capítol també inclou una modificació sobre els actuals algorismes de similitud per a grafs no dirigits, per adaptar-los per a grafs dirigits. Les metodologies d'avaluació de la PA s'analitzen al cinquè capítol. Comença amb una discussió sobre els problemes que suposa avaluar un context amb un gran desbalanceig de classes, identificant les metodologies apropiades per aquests casos. Es proposa una modificació sobre el mètode més apropiat actualment disponible, per tal de centrar-se en les prediccions rellevants. Segueix una discussió sobre l'estimació fidedigna de la precisió dels predictors. El sisè capítol descriu els grafs usats per avaluar els algorismes, així com la metodologia usada per transformar-los en grafs dirigits. Les raons per triar aquest conjunt de grafs són exposades, posant especial interès al cas dels grafs web i a la seva ben coneguda relació amb les jerarquies. Les propietats més bàsiques de cada graf resultant són descrites. Els tests efectuats es mostren al capítol setè. Els tres algorismes actuals de PA més competitius són comparats amb ells mateixos i amb la versió per a grafs dirigits definida anteriorment. L'algorisme proposat anteriorment i les seves modificacions també són avaluats. El problema de la PA en grafs web es considera per separat, avaluant sis grafs web diferents. El capítol acaba amb una discussió sobre les limitacions de les avaluacions formals, mostrant exemples de prediccions obtingudes. El vuitè capítol inclou els aspectes computacionals de la tesi. Comença amb una discussió sobre la importància de la gestió de memòria per a la definició del cost computacional dels algorismes de PA. Inclou una proposta sobre com reduir aquest cost mitjançant una reducció en la precisió. Segueix una secció centrada en la paral·lelització del codi, que inclou dues implementacions diferents, una en un model de programació específic per grafs (Pregel) i una amb un model de programació paral·lela genèric (OpenMP). El capítol finalitza amb una especificació dels recursos computacionals usats per als tests realitzats. Les conclusions de la tesi es presenten al capítol novè, i les línies de treball futur al desè
APA, Harvard, Vancouver, ISO, and other styles
8

Koshan, Jeffrey W. "Finite covers of homogeneous directed graphs." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0026/NQ51884.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kelner, Judith. "Using directed graphs for software visualisation." Thesis, University of Kent, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Naia, dos Santos Tassio. "Large structures in dense directed graphs." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8658/.

Full text
Abstract:
We answer questions in extremal combinatorics, for directed graphs. Specifically, we investigate which large tree-like directed graphs are contained in all dense directed graphs of large order. More precisely, let T be an oriented tree of order n; among others, we establish the following results. (1) We obtain a sufficient condition which ensures every tournament of order n contains T, and show that almost every tree possesses this property. (2) We prove that for all positive C, ɛ and sufficiently large n, every tournament of order (1+ɛ)n contains T if Δ(T)≤(log n)^C. (3) We prove that for all positive Δ, ɛ and sufficiently large n, every directed graph G of order n and minimum semidegree (1/2+ɛ)n contains T if Δ(T)≤Δ. (4) We obtain a sufficient condition which ensures that every directed graph G of order n with minimum semidegree at least (1/2+ɛ)n contains T, and show that almost every tree possesses this property. (5) We extend our method in (4) to a class of tree-like spanning graphs which includes all orientations of Hamilton cycles and large subdivisions of any graph. Result (1) confirms a conjecture of Bender and Wormald and settles a conjecture of Havet and Thomassé for almost every tree; (2) strengthens a result of Kühn, Mycroft and Osthus; (3) is a directed graph analogue of a classical result of Komlós, Sárközy and Szemerédi and is implied by (4) and (5) is of independent interest.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Directed graphs"

1

Bang-Jensen, Jørgen, and Gregory Gutin, eds. Classes of Directed Graphs. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71840-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Linda, Lesniak, and Behzad Mehdi, eds. Graphs & digraphs. 2nd ed. Monterey, Calif: Wadsworth & Brooks/Cole Advanced Books & Software, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Linda, Lesniak, ed. Graphs & digraphs. 4th ed. Boca Raton: Chapman & Hall/CRC, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andrei, Neculai. Sparse systems: Digraph approach of large-scale linear systems theory. Köln: Verlag TÜV Rheinland, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frieze, H. M. An algorithm for finding Hamilton cycles in random directed graphs. London: Queen Mary College, Department of Computer Science and Statistics, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Araújo, Paulo Ventura. Almost flow equivalence and the loop structure of directed graphs. [s.l.]: typescript, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tomboulian, Sherryl. A system for routing arbitrary directed graphs on SIMD architectures. Hampton, Va: ICASE, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tang, Xiaowei. Thre e extensions to force-directed placement for general graphs. Dublin: University College Dublin, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dror, Moshe. Directed Steiner tree problem on a graph: Models, relaxations, and algorithms. Monterey, Calif: Naval Postgraduate School, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reinschke, K. J. Multivariable control: A graph-theoretic approach. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Directed graphs"

1

Balakrishnan, R., and K. Ranganathan. "Directed Graphs." In A Textbook of Graph Theory, 33–43. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4419-8505-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Melnikov, O., V. Sarvanov, R. Tyshkevich, V. Yemelichev, and I. Zverovich. "Directed Graphs." In Kluwer Texts in the Mathematical Sciences, 151–71. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1514-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Webb, Geoffrey I., Johannes Fürnkranz, Johannes Fürnkranz, Johannes Fürnkranz, Geoffrey Hinton, Claude Sammut, Joerg Sander, et al. "Directed Graphs." In Encyclopedia of Machine Learning, 279. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Balakrishnan, R., and K. Ranganathan. "Directed Graphs." In A Textbook of Graph Theory, 37–47. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4529-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Xueliang, Colton Magnant, and Zhongmei Qin. "Directed Graphs." In Properly Colored Connectivity of Graphs, 97–102. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89617-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jenkyns, Tom, and Ben Stephenson. "Directed Graphs." In Undergraduate Topics in Computer Science, 241–98. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70151-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yadav, Santosh Kumar. "Directed Graphs." In Discrete Mathematics with Graph Theory, 545–74. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21321-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yadav, Santosh Kumar. "Directed Graphs." In Advanced Graph Theory, 111–39. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22562-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cherlin, Gregory L. "Homogeneous Directed Graphs." In Finite and Infinite Combinatorics in Sets and Logic, 81–95. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2080-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shekhar, Shashi, and Hui Xiong. "Directed Acyclic Graphs." In Encyclopedia of GIS, 245. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_299.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Directed graphs"

1

Mathys, Yves. "A graph browser for large directed graphs." In the 1992 ACM/SIGAPP Symposium. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/143559.143678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Satuluri, Venu, and Srinivasan Parthasarathy. "Symmetrizations for clustering directed graphs." In the 14th International Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1951365.1951407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tillman, Bálint, Athina Markopoulou, Carter T. Butts, and Minas Gjoka. "Construction of Directed 2K Graphs." In KDD '17: The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3097983.3098119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alon, Noga, and Asaf Shapira. "Testing subgraphs in directed graphs." In the thirty-fifth ACM symposium. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/780542.780644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Seyboth, Georg S., and Frank Allgower. "Clock synchronization over directed graphs." In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Molavipour, Sina, German Bassi, and Mikael Skoglund. "Testing for directed information graphs." In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2017. http://dx.doi.org/10.1109/allerton.2017.8262740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Buchsbaum, A. L., E. R. Gansner, and S. Venkatasubramanian. "Directed graphs and rectangular layouts." In Asia-Pacific Symposium on Visualisation 2007. IEEE, 2007. http://dx.doi.org/10.1109/apvis.2007.329276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Iraji, Mohammad Bagher, Mohammad Eini, Arash Amini, and Stefano Rini. "Stationary Processes on Directed Graphs." In 2024 12th Iran Workshop on Communication and Information Theory (IWCIT). IEEE, 2024. http://dx.doi.org/10.1109/iwcit62550.2024.10553092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Makhdoumi, Ali, and Asuman Ozdaglar. "Graph balancing for distributed subgradient methods over directed graphs." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7402401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Etesami, Jalal, and Negar Kiyavash. "Directed Information Graphs: A generalization of Linear Dynamical Graphs." In 2014 American Control Conference - ACC 2014. IEEE, 2014. http://dx.doi.org/10.1109/acc.2014.6859362.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Directed graphs"

1

Meyer, Carl. A Browser for Directed Graphs. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada166622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tseng, Lewis, and Nitin Vaidya. Exact Byzantine Consensus in Directed Graphs. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada568111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boutin, Debra, and Victoria Horan. Identifying Codes on Directed De Bruijn Graphs. Fort Belvoir, VA: Defense Technical Information Center, December 2014. http://dx.doi.org/10.21236/ada623527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Casasent, David. Associative Processors and Directed Graphs for Optical Processing. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada206739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sahner, R. A., and K. S. Trivedi. Performance and Reliability Analysis Using Directed Acyclic Graphs. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada160313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vaidya, Nitin. Matrix Representation of Iterative Approximate Byzantine Consensus in Directed Graphs. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada558910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bader, Brett William, Richard A. Harshman, and Tamara Gibson Kolda. Pattern analysis of directed graphs using DEDICOM: an application to Enron email. Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/900402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pawagi, Shaunak, and I. V. Ramakrishnan. Updating Properties of Directed Acyclic Graphs on a Parallel Random Access Machine. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada162954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kriegel, Francesco. Terminological knowledge aquisition in probalistic description logic. Technische Universität Dresden, 2018. http://dx.doi.org/10.25368/2022.239.

Full text
Abstract:
For a probabilistic extension of the description logic EL⊥, we consider the task of automatic acquisition of terminological knowledge from a given probabilistic interpretation. Basically, such a probabilistic interpretation is a family of directed graphs the vertices and edges of which are labeled, and where a discrete probabilitymeasure on this graph family is present. The goal is to derive so-called concept inclusions which are expressible in the considered probabilistic description logic and which hold true in the given probabilistic interpretation. A procedure for an appropriate axiomatization of such graph families is proposed and its soundness and completeness is justified.
APA, Harvard, Vancouver, ISO, and other styles
10

Kriegel, Francesco. Learning description logic axioms from discrete probability distributions over description graphs (Extended Version). Technische Universität Dresden, 2018. http://dx.doi.org/10.25368/2022.247.

Full text
Abstract:
Description logics in their standard setting only allow for representing and reasoning with crisp knowledge without any degree of uncertainty. Of course, this is a serious shortcoming for use cases where it is impossible to perfectly determine the truth of a statement. For resolving this expressivity restriction, probabilistic variants of description logics have been introduced. Their model-theoretic semantics is built upon so-called probabilistic interpretations, that is, families of directed graphs the vertices and edges of which are labeled and for which there exists a probability measure on this graph family. Results of scientific experiments, e.g., in medicine, psychology, or biology, that are repeated several times can induce probabilistic interpretations in a natural way. In this document, we shall develop a suitable axiomatization technique for deducing terminological knowledge from the assertional data given in such probabilistic interpretations. More specifically, we consider a probabilistic variant of the description logic EL⊥, and provide a method for constructing a set of rules, so-called concept inclusions, from probabilistic interpretations in a sound and complete manner.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography