Journal articles on the topic 'Directed borylation'

To see the other types of publications on this topic, follow the link: Directed borylation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Directed borylation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wang, Yan, Le Wang, Ling-Yan Chen, Pinaki S. Bhadury, and Zhihua Sun. "Transition Metal-Free Synthesis of Pinacol Arylboronate: Regioselective Boronation of 1,3-Disubstituted Benzenes." Australian Journal of Chemistry 67, no. 4 (2014): 675. http://dx.doi.org/10.1071/ch13642.

Full text
Abstract:
The regioselective synthesis of pinacol arylboronate has been achieved from 1,3-disubstituted benzene through directed ortho-metallation (DoM)–borylation sequence. A wide range of substituents and borylating reagents were investigated. In situ lithiation and subsequent boronation predominantly occurred at the ortho-position to afford the desired products in moderate yields.
APA, Harvard, Vancouver, ISO, and other styles
2

Al Mamari, Hamad H. "Ir-Catalyzed ortho-C-H Borylation of Aromatic C(sp2)-H Bonds of Carbocyclic Compounds Assisted by N-Bearing Directing Groups." Reactions 5, no. 2 (May 1, 2024): 318–37. http://dx.doi.org/10.3390/reactions5020016.

Full text
Abstract:
C-H borylation is a powerful strategy for the construction of C-B bonds due to the synthetic versatility of C-B bonds. Various transition metals affect the powerful functionalization of C-H bonds, of which Ir is the most common. Substrate-directed methods have enabled directed Ir-catalyzed C-H borylation at the ortho position. Amongst the powerful directing groups in Ir-catalyzed C-H borylation are N-containing carbocyclic systems. This review covers substrate-directed Ir-catalyzed ortho-C-H borylation of aromatic C(sp2)-H bonds in N-containing carbocyclic compounds, such as anilines, amides, benzyl amines, hydrazones, and triazines.
APA, Harvard, Vancouver, ISO, and other styles
3

Iqbal, S. A., K. Yuan, J. Cid, J. Pahl, and M. J. Ingleson. "Controlling selectivity in N-heterocycle directed borylation of indoles." Organic & Biomolecular Chemistry 19, no. 13 (2021): 2949–58. http://dx.doi.org/10.1039/d1ob00018g.

Full text
Abstract:
N-Heterocycle directing groups lead to selective borylation of indole at C2 or C7 controlled by heterocycle ring size. With five membered heterocycle directing groups, C2 borylation is disfavoured due to an increased degree of distortion.
APA, Harvard, Vancouver, ISO, and other styles
4

Auth, Marin R., Kathryn A. McGarry, and Timothy B. Clark. "Phosphorus‐Directed C−H Borylation." Advanced Synthesis & Catalysis 363, no. 9 (March 30, 2021): 2354–65. http://dx.doi.org/10.1002/adsc.202100173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cazorla, Clément, Timothy S. De Vries, and Edwin Vedejs. "P-Directed Borylation of Phenols." Organic Letters 15, no. 5 (March 2013): 984–87. http://dx.doi.org/10.1021/ol303203m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Iqbal, S. A., J. Pahl, K. Yuan, and M. J. Ingleson. "Intramolecular (directed) electrophilic C–H borylation." Chemical Society Reviews 49, no. 13 (2020): 4564–91. http://dx.doi.org/10.1039/c9cs00763f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ros, A., R. Fernández, and J. M. Lassaletta. "Functional group directed C–H borylation." Chem. Soc. Rev. 43, no. 10 (2014): 3229–43. http://dx.doi.org/10.1039/c3cs60418g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Ming-Hua. "Metal-free directed C–H borylation." Chinese Science Bulletin 65, no. 5 (February 1, 2020): 331–33. http://dx.doi.org/10.1360/tb-2019-0657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

De Vries, Timothy S., Aleksandrs Prokofjevs, Jeremy N. Harvey, and Edwin Vedejs. "Superelectrophilic Intermediates in Nitrogen-Directed Aromatic Borylation." Journal of the American Chemical Society 131, no. 41 (October 21, 2009): 14679–87. http://dx.doi.org/10.1021/ja905369n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lv, Jiahang, Xiangyang Chen, Xiao-Song Xue, Binlin Zhao, Yong Liang, Minyan Wang, Liqun Jin, et al. "Metal-free directed sp2-C–H borylation." Nature 575, no. 7782 (September 30, 2019): 336–40. http://dx.doi.org/10.1038/s41586-019-1640-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Cazorla, Clement, Timothy S. De Vries, and Edwin Vedejs. "ChemInform Abstract: P-Directed Borylation of Phenols." ChemInform 44, no. 30 (July 4, 2013): no. http://dx.doi.org/10.1002/chin.201330194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yusuf, Mayyadah, Kanglei Liu, Fang Guo, Roger A. Lalancette, and Frieder Jäkle. "Luminescent organoboron ladder compounds via directed electrophilic aromatic C–H borylation." Dalton Transactions 45, no. 11 (2016): 4580–87. http://dx.doi.org/10.1039/c5dt05077d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chotana, Ghayoor, Soneela Asghar, Tayyaba Shahzadi, Meshari Alazmi, Xin Gao, Abdul-Hamid Emwas, Rahman Saleem, and Farhat Batool. "Iridium-Catalyzed Regioselective Borylation of Substituted Biaryls." Synthesis 50, no. 11 (March 28, 2018): 2211–20. http://dx.doi.org/10.1055/s-0036-1591968.

Full text
Abstract:
Biarylboronic esters are generally prepared by directed ortho­-metalation or by Miyaura borylation and hence rely on the presence of a directing group or pre-functionalization. In this paper, the preparation of biarylboronic esters by direct C–H borylation of biaryl substrates is reported. Sterically governed regioselectivities were observed in the borylation of appropriately substituted biaryls by using [Ir(OMe)(COD)]2 precatalyst and di-tert-butylbipyridyl ligand. The resulting biarylboronic esters were isolated in 38–98% yields. The synthesized biarylboronic esters were further successfully employed in C–O, C–Br, and C–C coupling reactions.
APA, Harvard, Vancouver, ISO, and other styles
14

Yuan, Kang, Daniel Volland, Sven Kirschner, Marina Uzelac, Gary S. Nichol, Agnieszka Nowak-Król, and Michael J. Ingleson. "Enhanced N-directed electrophilic C–H borylation generates BN–[5]- and [6]helicenes with improved photophysical properties." Chemical Science 13, no. 4 (2022): 1136–45. http://dx.doi.org/10.1039/d1sc06513k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Keske, Eric C., Brandon D. Moore, Olena V. Zenkina, Ruiyao Wang, Gabriele Schatte, and Cathleen M. Crudden. "Highly selective directed arylation reactions via back-to-back dehydrogenative C–H borylation/arylation reactions." Chem. Commun. 50, no. 69 (2014): 9883–86. http://dx.doi.org/10.1039/c4cc02499k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Han, Yi, Wei Yuan, Hongyan Wang, Mengwei Li, Wenqin Zhang, and Yulan Chen. "Dual-responsive BN-embedded phenacenes featuring mechanochromic luminescence and ratiometric sensing of fluoride ions." Journal of Materials Chemistry C 6, no. 39 (2018): 10456–63. http://dx.doi.org/10.1039/c8tc02449a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Thongpaen, Jompol, Thibault E. Schmid, Loic Toupet, Vincent Dorcet, Marc Mauduit, and Olivier Baslé. "Directed ortho C–H borylation catalyzed using Cp*Rh(iii)–NHC complexes." Chemical Communications 54, no. 59 (2018): 8202–5. http://dx.doi.org/10.1039/c8cc03144d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Motokura, Ken, and Kyogo Maeda. "Recent Advances in Heterogeneous Ir Complex Catalysts for Aromatic C–H Borylation." Synthesis 53, no. 18 (April 9, 2021): 3227–34. http://dx.doi.org/10.1055/a-1478-6118.

Full text
Abstract:
AbstractAromatic C–H borylation catalyzed by an Ir complex is among the most powerful methods for activating inert bonds. The products, i.e., arylboronic acids and their esters, are usable chemicals for the Suzuki–Miyaura cross-coupling reaction, and significant effort has been directed toward the development of homogeneous catalysis chemistry. In this short review, we present a recent overview of current heterogeneous Ir-complex catalyst developments for aromatic C–H borylation. Not only have Ir complexes been immobilized on support surfaces with phosphine and bipyridine ligands, but Ir complexes incorporated within solid materials have also been developed as highly active and reusable heterogeneous Ir catalysts. Their catalytic activities and stabilities strongly depend on their surface structures, including linker length and ligand structure.1 Introduction and Homogeneous Ir Catalysis2 Heterogeneous Ir Complex Catalysts for C–H Borylation Reactions3 Other Heterogeneous Metal Complex Catalysts for C–H Borylation Reactions4 Summary and Outlook
APA, Harvard, Vancouver, ISO, and other styles
19

Eastabrook, Andrew S., and Jonathan Sperry. "Iridium-Catalyzed Triborylation of 3-Substituted Indoles." Australian Journal of Chemistry 68, no. 12 (2015): 1810. http://dx.doi.org/10.1071/ch15393.

Full text
Abstract:
Readily available 3-substituted indoles undergo a one-pot iridium-catalyzed triborylation at the C2, C5, and C7 sites. 1H NMR analysis indicates borylation at C2 and C7 occurs first (no monoborylated product is observed), with the third borylation occurring as a separate, distinct step that is sterically directed to C5 by a combination of the substituent at C3 and the boronate at C7. The resulting tetrasubstituted indoles possess a substitution pattern that is cumbersome to prepare using existing methods.
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Zheng‐Jun, Xiangyang Chen, Lei Wu, Jonathan J. Wong, Yong Liang, Yue Zhao, Kendall N. Houk, and Zhuangzhi Shi. "Metal‐Free Directed C−H Borylation of Pyrroles." Angewandte Chemie 133, no. 15 (March 5, 2021): 8581–85. http://dx.doi.org/10.1002/ange.202016573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wang, Zheng‐Jun, Xiangyang Chen, Lei Wu, Jonathan J. Wong, Yong Liang, Yue Zhao, Kendall N. Houk, and Zhuangzhi Shi. "Metal‐Free Directed C−H Borylation of Pyrroles." Angewandte Chemie International Edition 60, no. 15 (March 5, 2021): 8500–8504. http://dx.doi.org/10.1002/anie.202016573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lee, Bernadette, Madalina T. Mihai, Violeta Stojalnikova, and Robert J. Phipps. "Ion-Pair-Directed Borylation of Aromatic Phosphonium Salts." Journal of Organic Chemistry 84, no. 20 (May 22, 2019): 13124–34. http://dx.doi.org/10.1021/acs.joc.9b00878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ros, A., R. Fernandez, and J. M. Lassaletta. "ChemInform Abstract: Functional Group Directed C-H Borylation." ChemInform 45, no. 28 (June 26, 2014): no. http://dx.doi.org/10.1002/chin.201428266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Yu-hua, and Zhong-Jie Jiang. "Computational understanding of catalyst-controlled borylation of fluoroarenes: directed vs. undirected pathway." RSC Advances 10, no. 33 (2020): 19562–69. http://dx.doi.org/10.1039/d0ra03428b.

Full text
Abstract:
In this work, density functional theory (DFT) calculations are performed to understand the origin of the regioselective C–H borylation of aromatics catalyzed by Co(i)/iPrPNP and Ir(iii)/dtbpy (4,4-di-tert-butyl bipyridine).
APA, Harvard, Vancouver, ISO, and other styles
25

Iqbal, Saqib A., Jessica Cid, Richard J. Procter, Marina Uzelac, Kang Yuan, and Michael J. Ingleson. "Acyl‐Directed ortho ‐Borylation of Anilines and C7 Borylation of Indoles using just BBr 3." Angewandte Chemie International Edition 58, no. 43 (October 21, 2019): 15381–85. http://dx.doi.org/10.1002/anie.201909786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Iqbal, Saqib A., Jessica Cid, Richard J. Procter, Marina Uzelac, Kang Yuan, and Michael J. Ingleson. "Acyl‐Directed ortho ‐Borylation of Anilines and C7 Borylation of Indoles using just BBr 3." Angewandte Chemie 131, no. 43 (September 12, 2019): 15525–29. http://dx.doi.org/10.1002/ange.201909786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hale, Lillian V. A., David G. Emmerson, Emma F. Ling, Andrew J. Roering, Marissa A. Ringgold, and Timothy B. Clark. "An ortho-directed C–H borylation/Suzuki coupling sequence in the formation of biphenylbenzylic amines." Organic Chemistry Frontiers 2, no. 6 (2015): 661–64. http://dx.doi.org/10.1039/c4qo00348a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Robbins, Daniel W., Timothy A. Boebel, and John F. Hartwig. "Iridium-Catalyzed, Silyl-Directed Borylation of Nitrogen-Containing Heterocycles." Journal of the American Chemical Society 132, no. 12 (March 31, 2010): 4068–69. http://dx.doi.org/10.1021/ja1006405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tang, Jia, Thishana Singh, Xingzhen Li, Linpeng Liu, and Taigang Zhou. "Selenium-Directed ortho-C–H Borylation by Iridium Catalysis." Journal of Organic Chemistry 85, no. 18 (August 19, 2020): 11959–67. http://dx.doi.org/10.1021/acs.joc.0c01559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Iqbal, Saqib A., Jessica Cid, Richard J. Procter, Marina Uzelac, Kang Yuan, and Michael J. Ingleson. "Berichtigung: Acyl‐Directed ortho ‐Borylation of Anilines and C7 Borylation of Indoles using just BBr 3." Angewandte Chemie 133, no. 13 (March 15, 2021): 6930. http://dx.doi.org/10.1002/ange.202101638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Iqbal, Saqib A., Jessica Cid, Richard J. Procter, Marina Uzelac, Kang Yuan, and Michael J. Ingleson. "Corrigendum: Acyl‐Directed ortho ‐Borylation of Anilines and C7 Borylation of Indoles using just BBr 3." Angewandte Chemie International Edition 60, no. 13 (March 16, 2021): 6854. http://dx.doi.org/10.1002/anie.202101638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Boebel, Timothy A., and John F. Hartwig. "Silyl-Directed, Iridium-Catalyzedortho-Borylation of Arenes. A One-Potortho-Borylation of Phenols, Arylamines, and Alkylarenes." Journal of the American Chemical Society 130, no. 24 (June 2008): 7534–35. http://dx.doi.org/10.1021/ja8015878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Crossley, D. L., I. A. Cade, E. R. Clark, A. Escande, M. J. Humphries, S. M. King, I. Vitorica-Yrezabal, M. J. Ingleson, and M. L. Turner. "Enhancing electron affinity and tuning band gap in donor–acceptor organic semiconductors by benzothiadiazole directed C–H borylation." Chemical Science 6, no. 9 (2015): 5144–51. http://dx.doi.org/10.1039/c5sc01800e.

Full text
Abstract:
Electrophilic borylation using BCl3and benzothiadiazole to direct the C–H functionalisation of an adjacent aromatic unit produces fused boracyclic materials with minimally changed HOMO energies but significantly reduced LUMO energies.
APA, Harvard, Vancouver, ISO, and other styles
34

Rej, Supriya, Amrita Das, and Naoto Chatani. "Pyrimidine-directed metal-free C–H borylation of 2-pyrimidylanilines: a useful process for tetra-coordinated triarylborane synthesis." Chemical Science 12, no. 34 (2021): 11447–54. http://dx.doi.org/10.1039/d1sc02937a.

Full text
Abstract:
We present the metal-free ortho-C–H borylation of 2-pyrimidylanilines to afford synthetically important boronic esters and tetra-coordinated triarylboranes, which could be useful in materials science as well as Lewis-acid catalysts.
APA, Harvard, Vancouver, ISO, and other styles
35

Murata, Miki, and Yuna Maeda. "Ruthenium-Catalyzed Functional-Group-Directed C-H Silylation and Borylation." Journal of Synthetic Organic Chemistry, Japan 77, no. 9 (September 1, 2019): 876–82. http://dx.doi.org/10.5059/yukigoseikyokaishi.77.876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Liu, Li, Guanghui Wang, Jiao Jiao, and Pengfei Li. "Sulfur-Directed Ligand-Free C–H Borylation by Iridium Catalysis." Organic Letters 19, no. 22 (November 7, 2017): 6132–35. http://dx.doi.org/10.1021/acs.orglett.7b03008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hyland, Stephen N., Ellie A. Meck, Mariola Tortosa, and Timothy B. Clark. "α-Amidoboronate esters by amide-directed alkane C H borylation." Tetrahedron Letters 60, no. 16 (April 2019): 1096–98. http://dx.doi.org/10.1016/j.tetlet.2019.03.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Prokofjevs, Aleksandrs, and Edwin Vedejs. "N-Directed Aliphatic C–H Borylation Using Borenium Cation Equivalents." Journal of the American Chemical Society 133, no. 50 (December 21, 2011): 20056–59. http://dx.doi.org/10.1021/ja208093c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wen, Jian, Dingyi Wang, Jiasheng Qian, Di Wang, Chendan Zhu, Yue Zhao, and Zhuangzhi Shi. "Rhodium-Catalyzed PIII -Directed ortho -C−H Borylation of Arylphosphines." Angewandte Chemie 131, no. 7 (January 25, 2019): 2100–2104. http://dx.doi.org/10.1002/ange.201813452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wen, Jian, Dingyi Wang, Jiasheng Qian, Di Wang, Chendan Zhu, Yue Zhao, and Zhuangzhi Shi. "Rhodium-Catalyzed PIII -Directed ortho -C−H Borylation of Arylphosphines." Angewandte Chemie International Edition 58, no. 7 (January 25, 2019): 2078–82. http://dx.doi.org/10.1002/anie.201813452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Genov, Georgi R., James L. Douthwaite, Antti S. K. Lahdenperä, David C. Gibson, and Robert J. Phipps. "Enantioselective remote C–H activation directed by a chiral cation." Science 367, no. 6483 (March 12, 2020): 1246–51. http://dx.doi.org/10.1126/science.aba1120.

Full text
Abstract:
Chiral cations have been used extensively as organocatalysts, but their application to rendering transition metal–catalyzed processes enantioselective remains rare. This is despite the success of the analogous charge-inverted strategy in which cationic metal complexes are paired with chiral anions. We report here a strategy to render a common bipyridine ligand anionic and pair its iridium complexes with a chiral cation derived from quinine. We have applied these ion-paired complexes to long-range asymmetric induction in the desymmetrization of the geminal diaryl motif, located on a carbon or phosphorus center, by enantioselective C–H borylation. In principle, numerous common classes of ligand could likewise be amenable to this approach.
APA, Harvard, Vancouver, ISO, and other styles
42

Ishiyama, Tatsuo. "Developments of New Catalytic Borylation Reactions Directed towards Fine Organic Synthesis." Journal of Synthetic Organic Chemistry, Japan 61, no. 12 (2003): 1176–85. http://dx.doi.org/10.5059/yukigoseikyokaishi.61.1176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Larsen, Matthew A., Seung Hwan Cho, and John Hartwig. "Iridium-Catalyzed, Hydrosilyl-Directed Borylation of Unactivated Alkyl C–H Bonds." Journal of the American Chemical Society 138, no. 3 (January 15, 2016): 762–65. http://dx.doi.org/10.1021/jacs.5b12153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tian, Ya-Ming, Xiao-Ning Guo, Zhu Wu, Alexandra Friedrich, Stephen A. Westcott, Holger Braunschweig, Udo Radius, and Todd B. Marder. "Ni-Catalyzed Traceless, Directed C3-Selective C–H Borylation of Indoles." Journal of the American Chemical Society 142, no. 30 (June 27, 2020): 13136–44. http://dx.doi.org/10.1021/jacs.0c05434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Morris, Kelsey C., Shawn E. Wright, Gillian F. Meyer, and Timothy B. Clark. "Phosphine-Directed sp3 C–H, C–O, and C–N Borylation." Journal of Organic Chemistry 85, no. 22 (September 18, 2020): 14795–801. http://dx.doi.org/10.1021/acs.joc.0c01706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ingleson, Michael J. "Metal-free acyl-directed electrophilic C-H borylation using just BBr3." Science China Chemistry 62, no. 12 (November 8, 2019): 1547–48. http://dx.doi.org/10.1007/s11426-019-9642-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Roering, Andrew J., Lillian V. A. Hale, Phillip A. Squier, Marissa A. Ringgold, Emily R. Wiederspan, and Timothy B. Clark. "Iridium-Catalyzed, Substrate-Directed C–H Borylation Reactions of Benzylic Amines." Organic Letters 14, no. 13 (June 25, 2012): 3558–61. http://dx.doi.org/10.1021/ol301635x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Robbins, Daniel W., Timothy A. Boebel, and John F. Hartwig. "ChemInform Abstract: Iridium-Catalyzed, Silyl-Directed Borylation of Nitrogen-Containing Heterocycles." ChemInform 41, no. 32 (July 23, 2010): no. http://dx.doi.org/10.1002/chin.201032051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Yandong, Jingyi Bai, Youqing Yang, Wenxuan Zhao, Yong Liang, Di Wang, Yue Zhao, and Zhuangzhi Shi. "Rhodium-catalysed selective C–C bond activation and borylation of cyclopropanes." Chemical Science 12, no. 10 (2021): 3599–607. http://dx.doi.org/10.1039/d0sc06186g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xu, Feiyang, Olivia M. Duke, Daniel Rojas, Hanka M. Eichelberger, Raphael S. Kim, Timothy B. Clark, and Donald A. Watson. "Arylphosphonate-Directed Ortho C–H Borylation: Rapid Entry into Highly-Substituted Phosphoarenes." Journal of the American Chemical Society 142, no. 28 (June 27, 2020): 11988–92. http://dx.doi.org/10.1021/jacs.0c04159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography