Academic literature on the topic 'Direct simulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Direct simulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Direct simulation"

1

Tsujimoto, Koichi, Toshihiko Shakouchi, Shuji Sasazaki, and Toshitake Ando. "Direct Numerical Simulation of Jet Mixing Control Using Combined Jets(Numerical Simulation)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 725–30. http://dx.doi.org/10.1299/jsmeicjwsf.2005.725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Danforth, Amanda L., and Lyle N. Long. "Nonlinear acoustic simulations using direct simulation Monte Carlo." Journal of the Acoustical Society of America 116, no. 4 (October 2004): 1948–55. http://dx.doi.org/10.1121/1.1785614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Yi, Nagata Kouji, Sakai Yasuhiko, Suzuki Hiroki, Ito Yasumasa, Terashima Osamu, and Hayase Toshiyuki. "1102 DIRECT NUMERICAL SIMULATION OF SINGLESQUARE GRID-GENERATED TURBULENCE." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1102–1_—_1102–5_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1102-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Kaimin. "Simulation analysis of prestressed tensioning whole processon direct constraint method." Functional materials 23, no. 4 (March 24, 2017): 122–26. http://dx.doi.org/10.15407/fm24.01.122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chung, D., L. Chan, M. MacDonald, N. Hutchins, and A. Ooi. "A fast direct numerical simulation method for characterising hydraulic roughness." Journal of Fluid Mechanics 773 (May 26, 2015): 418–31. http://dx.doi.org/10.1017/jfm.2015.230.

Full text
Abstract:
We describe a fast direct numerical simulation (DNS) method that promises to directly characterise the hydraulic roughness of any given rough surface, from the hydraulically smooth to the fully rough regime. The method circumvents the unfavourable computational cost associated with simulating high-Reynolds-number flows by employing minimal-span channels (Jiménez & Moin, J. Fluid Mech., vol. 225, 1991, pp. 213–240). Proof-of-concept simulations demonstrate that flows in minimal-span channels are sufficient for capturing the downward velocity shift, that is, the Hama roughness function, predicted by flows in full-span channels. We consider two sets of simulations, first with modelled roughness imposed by body forces, and second with explicit roughness described by roughness-conforming grids. Owing to the minimal cost, we are able to conduct direct numerical simulations with increasing roughness Reynolds numbers while maintaining a fixed blockage ratio, as is typical in full-scale applications. The present method promises a practical, fast and accurate tool for characterising hydraulic resistance directly from profilometry data of rough surfaces.
APA, Harvard, Vancouver, ISO, and other styles
6

Khatkevich, Mark. "Direct-flow adder program simulation." Program Systems: Theory and Applications 7, no. 4 (2016): 359–67. http://dx.doi.org/10.25209/2079-3316-2016-7-4-359-367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Huang, and Christopher J. Foot. "Direct simulation of evaporative cooling." Journal of Physics B: Atomic, Molecular and Optical Physics 29, no. 8 (April 28, 1996): L321—L328. http://dx.doi.org/10.1088/0953-4075/29/8/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Albright, B. J., W. Daughton, Don S. Lemons, Dan Winske, and Michael E. Jones. "Quiet direct simulation of plasmas." Physics of Plasmas 9, no. 5 (May 2002): 1898–904. http://dx.doi.org/10.1063/1.1452732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goode, Daniel J. "Direct Simulation of Groundwater Age." Water Resources Research 32, no. 2 (February 1996): 289–96. http://dx.doi.org/10.1029/95wr03401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Joung, C. G., N. Phan-Thien, and X. J. Fan. "Direct simulation of flexible fibers." Journal of Non-Newtonian Fluid Mechanics 99, no. 1 (April 2001): 1–36. http://dx.doi.org/10.1016/s0377-0257(01)00113-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Direct simulation"

1

Jammy, S. P. "Direct numerical simulation of vortices." Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/809415/.

Full text
Abstract:
A direct numerical simulation of a Batchelor vortex has been carried out in the presence of freely decaying turbulence, using both periodic and symmetric boundary conditions; the latter most closely approximates typical experimental conditions, while the former is often used in computational simulations for numerical convenience. A recently developed numerical method, based on compact schemes combined with three stage Runge-Kutta method for time integration, with projection method for enforcing continuity is used for numerical simulations. The Poisson solver used is a direct solver in spectral space. The higher-order velocity statistics were shown to be strongly dependent upon the boundary conditions, but the dependence could be mostly eliminated by correcting for the random, Gaussian modulation of the vortex trajectory, commonly referred to as wandering, using a technique often employed in the analysis of experimental data. Once this wandering had been corrected for, the strong peaks in the Reynolds stresses normally observed at the vortex centre were replaced by smaller local extrema located within the core region but away from the centre. Analysis of the budgets of turbulent kinetic energy and normal Reynolds stress suggest that the production budget during the growth phase of vortex development, resembles turbulent boundary layer type budgets. The analysis of the budgets of turbulent shear stresses shows that the formation and organization of `hairpin' (secondary) structures within the core is the main mechanism for turbulent production and the budget of TKE and radial tangential shear stress shows a turbulent boundary layer type budget.
APA, Harvard, Vancouver, ISO, and other styles
2

Jalaal, Maziyar. "Direct numerical simulation of fragmentation of droplets." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42476.

Full text
Abstract:
The work described in the present thesis is related to a series of projects that I worked on toward the better understanding of fragmentation phenomena. In the past decades, the science of fragmentation has attracted many attentions within the researchers due to its wide range of applications. However, because of the complexity of the subject, even its basic concepts need more investigations. This thesis starts with an introduction to fragmentation of droplets using experimental or numerical approaches. It is discussed that the current mathematical and experimental tools are not able to describe all the details. Thus, high performance numerical simulations are the best alternatives to study the breakup of droplets. The introduction is followed by a discussion on the numerical method and the ranges of the non-dimensional groups. It is described that an adaptive, volume of fluid (VOF) method based on octree meshing is used, providing a notable reduction of computational cost. The rest of the thesis basically discusses the obtained results using direct numerical simulations. Two main geometries are investigated: falling droplets and droplets in a stream. For the case of falling droplets, three simulations with different Eötvös numbers are performed. For the case of droplets in a stream, two-dimensional and three-dimensional simulations are performed for a range of Weber number. The results are compared with the available mathematical theories and it is shown that the analysis presented here precisely demonstrates the mechanism of the bag breakup of falling droplets and instability growth over the droplets in an external high-speed flow. The outcomes can significantly assist the development of the secondary atomization and turbulent two-phase flows modelling.
APA, Harvard, Vancouver, ISO, and other styles
3

Rajandram, Vijayanand. "Direct numerical simulation of buoyant reacting plumes." Thesis, Queen Mary, University of London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alam, Mahbubul. "Direct numerical simulation of laminar separation bubbles." Thesis, Queen Mary, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chasos, Charalambos Antoniou. "CFD simulation of direct injection gasoline sprays." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Zhen. "Direct Simulation Methods for Multiple Changepoint Problems." Thesis, Lancaster University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pitchford, Randall S. "Telemetry Simulation Using Direct Digital Synthesis Techniques." International Foundation for Telemetering, 1990. http://hdl.handle.net/10150/613393.

Full text
Abstract:
International Telemetering Conference Proceedings / October 29-November 02, 1990 / Riviera Hotel and Convention Center, Las Vegas, Nevada
Direct digital synthesis technology has been employed in the development of a telemetry data simulator constructed for the Western Space and Missile Center (WSMC). The telemetry simulator, known as TDVS II, is briefly described to provide background; however, the principal subject is related to the development of programmable synthesizer modules employed in the TDVS II system. The programmable synthesizer modules (or PSMs) utilize direct digital synthesizer (DDS) technology to generate a variety of common telemetry signals for simulation output. The internal behavior of DDS devices has been thoroughly examined in the literature for nearly 20 years. The author is aware of significant work in this area by every major aerospace contractor, as well as a broad range of activity by semiconductor developers, and in the universities. The purpose here is to expand awareness of the subject and its basic concepts in support of applications for the telemetry industry. During the TDVS II application development period, new DDS devices have appeared and several advances in device technology (in terms of both speed and technique) have been effected. Many fundamental communications technologies will move into greater capacity and offer new capabilities over the next few years as a direct result of DDS technology. Among these are: cellular telephony, high-definition television and video delivery systems in general, data communications down to the general business facsimile and home modem level, and other communications systems of various types to include telemetry systems. A recent literature search of the topic, limited only to documents available in English, indicates that some 25 articles and dissertations of significance have appeared since 1985, with over 30% of these appearing in international forums (including Germany, Japan, Great Britain, Portugal, Finland...). Product advertisements can readily be found in various publications on test instruments, amateur radio, etc., which indicate that international knowledge and product application of the technology is becoming increasingly widespread.
APA, Harvard, Vancouver, ISO, and other styles
8

Pezeshki, Mohammad. "Direct numerical simulation of hydrogen fluid dynamics." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/359737/.

Full text
Abstract:
Direct numerical simulation of Hz - O2 in the context of a temporally evolving mixing layer has been performed. Real molecular properties as well as the effects of the species differential diffusion were incorporated into an existing 3D parallel FORTRAN code. The geometry is a box with streamwise and spanwise directions being periodic whereas non-periodic boundaries were set up in transverse (vertical) directions which leads to inhomogeneity for the turbulent field in these directions. Initialisation were performed by error function distributions for streamwise velocity component, scalar mass fraction and temperature along the vertical axis of the domain, Initial pressure is set to be uniform and density Willi calculated based on ideal-gas law for the mixture. Disturbances were introduced by generating spanwise and streamwise vorticity in the middle of the mixing layer to enable transition from laminar to turbulent.
APA, Harvard, Vancouver, ISO, and other styles
9

Pimentel, Richard. "Direct Simulation from a Model Specification Language." DigitalCommons@USU, 1986. https://digitalcommons.usu.edu/etd/6985.

Full text
Abstract:
The purpose of this thesis was to develop a program that would accept, as input, a finite set of algebraic equations and simple if-then conditional expressions that model a natural system, and then produce a continuous computer simulation with graphics and tabular output. The equations and conditionals can be in any order and key elements can be missing. The program can be used to run existing models or as a development tool to produce immediate prototypic computer simulations through synergistic man-machine interactions. The theoretical aspects of automatic program generation were discussed, as well as the architectural design of the system. The simulation system was used to develop a computer simulation of an exploited Northern Utah pheasant population and the results were compared to the results from an earlier FORTRAN computer simulation of the same model. It was concluded that the simulation system developed for this thesis produces verified computer simulations from mathematical models that are at least as accurate as the corresponding simulation written in FORTRAN. The system was easy to use and should be useful for unsophisticated users. Some "tuning'' of the input was needed to produce a verified simulation and it was concluded that further work was needed here.
APA, Harvard, Vancouver, ISO, and other styles
10

Forest, Vincent. "Robust object-based algorithms for direct shadow simulation." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1188/.

Full text
Abstract:
En informatique graphique, les algorithmes de générations d'ombres évaluent la quantité de lumière directement perçue par une environnement virtuel. Calculer précisément des ombres est cependant coûteux en temps de calcul. Dans cette dissertation, nous présentons un nouveau système basé objet robuste, qui permet de calculer des ombres réalistes sur des scènes dynamiques et ce en temps interactif. Nos contributions incluent notamment le développement de nouveaux algorithmes de génération d'ombres douces ainsi que leur mise en oeuvre efficace sur processeur graphique. Nous commençons par formaliser la problématique du calcul d'ombres directes. Tout d'abord, nous définissons ce que sont les ombres directes dans le contexte général du transport de la lumière. Nous étudions ensuite les techniques interactives qui génèrent des ombres directes. Suite à cette étude nous montrons que mêmes les algorithmes dit physiquement réalistes se reposent sur des approximations. Nous mettons également en avant, que malgré leur contraintes géométriques, les algorithmes d'ombres basées objet sont un bon point de départ pour résoudre notre problématique de génération efficace et robuste d'ombres directes. Basé sur cette observation, nous étudions alors le système basé objet existant et mettons en avant ses problèmes de robustesse. Nous proposons une nouvelle technique qui améliore la qualité des ombres générées par ce système en lui ajoutant une étape de mélange de pénombres. Malgré des propriétés et des résultats convaincants, les limitations théoriques et de mise en oeuvre limite la qualité générale et les performances de cet algorithme. Nous présentons ensuite un nouvel algorithme d'ombres basées objet. Cet algorithme combine l'efficacité de l'approche basée objet temps réel avec la précision de sa généralisation au rendu hors ligne. Notre algorithme repose sur l'évaluation locale du nombre d'objets entre deux points : la complexité de profondeur. Nous décrivons comment nous utilisons cet algorithme pour échantillonner la complexité de profondeur entre les surfaces visibles d'une scène et une source lumineuse. Nous générons ensuite des ombres à partir de cette information soit en modulant l'éclairage direct soit en intégrant numériquement l'équation d'illumination directe. Nous proposons ensuite une extension de notre algorithme afin qu'il puisse prendre en compte les ombres projetées par des objets semi-opaque. Finalement, nous présentons une mise en oeuvre efficace de notre système qui démontre que des ombres basées objet peuvent être générées de façon efficace et ce même sur une scène dynamique. En rendu temps réel, il est commun de représenter des objets très détaillés encombinant peu de triangles avec des textures qui représentent l'opacité binaire de l'objet. Les techniques de génération d'ombres basées objet ne traitent pas de tels triangles dit "perforés". De par leur nature, elles manipulent uniquement les géométries explicitement représentées par des primitives géométriques. Nous présentons une nouvel algorithme basé objet qui lève cette limitation. Nous soulignons que notre méthode peut être efficacement combinée avec les systèmes existants afin de proposer un système unifié basé objet qui génère des ombres à la fois pour des maillages classiques et des géométries perforées. La mise en oeuvre proposée montre finalement qu'une telle combinaison fournit une solution élégante, efficace et robuste à la problématique générale de l'éclairage direct et ce aussi bien pour des applications temps réel que des applications sensibles à la la précision du résultat
Direct shadow algorithms generate shadows by simulating the direct lighting interaction in a virtual environment. The main challenge with the accurate direct shadow problematic is its computational cost. In this dissertation, we develop a new robust object-based shadow framework that provides realistic shadows at interactive frame rate on dynamic scenes. Our contributions include new robust object-based soft shadow algorithms and efficient interactive implementations. We start, by formalizing the direct shadow problematic. Following the light transport problematic, we first formalize what are robust direct shadows. We then study existing interactive direct shadow techniques and outline that the real time direct shadow simulation remains an open problem. We show that even the so called physically plausible soft shadow algorithms still rely on approximations. Nevertheless we exhibit that, despite their geometric constraints, object-based approaches seems well suited when targeting accurate solutions. Starting from the previous analyze, we investigate the existing object-based shadow framework and discuss about its robustness issues. We propose a new technique that drastically improve the resulting shadow quality by improving this framework with a penumbra blending stage. We present a practical implementation of this approach. From the obtained results, we outline that, despite desirable properties, the inherent theoretical and implementation limitations reduce the overall quality and performances of the proposed algorithm. We then present a new object-based soft shadow algorithm. It merges the efficiency of the real time object-based shadows with the accuracy of its offline generalization. The proposed algorithm lies onto a new local evaluation of the number of occluders between points (\ie{} the depth complexity). We describe how we use this algorithm to sample the depth complexity between any visible receiver and the light source. From this information, we compute shadows by either modulate the direct lighting or numerically solve the direct illumination with an accuracy depending on the light sampling strategy. We then propose an extension of our algorithm in order to handle shadows cast by semi opaque occluders. We finally present an efficient implementation of this framework that demonstrates that object-based shadows can be efficiently used on complex dynamic environments. In real time rendering, it is common to represent highly detailed objects with few triangles and transmittance textures that encode their binary opacity. Object-based techniques do not handle such perforated triangles. Due to their nature, they can only evaluate the shadows cast by models whose their shape is explicitly defined by geometric primitives. We describe a new robust object-based algorithm that addresses this main limitation. We outline that this method can be efficiently combine with object-based frameworks in order to evaluate approximative shadows or simulate the direct illumination for both common meshes and perforated triangles. The proposed implementation shows that such combination provides a very strong and efficient direct lighting framework, well suited to many domains ranging from quality sensitive to performance critical applications
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Direct simulation"

1

Bernard, Geurts, Armenio Vincenzo, Fröhlich Jochen, and SpringerLink (Online service), eds. Direct and Large-Eddy Simulation VIII. Dordrecht: Springer Science+Business Media B.V., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Salvetti, Maria Vittoria, Vincenzo Armenio, Jochen Fröhlich, Bernard J. Geurts, and Hans Kuerten, eds. Direct and Large-Eddy Simulation XI. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04915-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Friedrich, Rainer, Bernard J. Geurts, and Olivier Métais, eds. Direct and Large-Eddy Simulation V. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2313-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grigoriadis, Dimokratis G. E., Bernard J. Geurts, Hans Kuerten, Jochen Fröhlich, and Vincenzo Armenio, eds. Direct and Large-Eddy Simulation X. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63212-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chollet, Jean-Pierre, Peter R. Voke, and Leonhard Kleiser, eds. Direct and Large-Eddy Simulation II. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5624-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Geurts, Bernard J., Rainer Friedrich, and Olivier Métais, eds. Direct and Large-Eddy Simulation IV. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1263-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuerten, Hans, Bernard Geurts, Vincenzo Armenio, and Jochen Fröhlich, eds. Direct and Large-Eddy Simulation VIII. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2482-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lamballais, Eric, Rainer Friedrich, Bernard J. Geurts, and Olivier Métais, eds. Direct and Large-Eddy Simulation VI. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/978-1-4020-5152-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Voke, Peter R., Neil D. Sandham, and Leonhard Kleiser, eds. Direct and Large-Eddy Simulation III. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9285-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fröhlich, Jochen, Hans Kuerten, Bernard J. Geurts, and Vincenzo Armenio, eds. Direct and Large-Eddy Simulation IX. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14448-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Direct simulation"

1

Aliabadi, Amir A. "Direct Numerical Simulation." In Turbulence, 231–33. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95411-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schwartzkopff, Thomas, and Claus-Dieter Munz. "Direct Simulation of Aeroacoustics." In Analysis and Simulation of Multifield Problems, 337–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36527-3_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ciofalo, Michele. "Direct Numerical Simulation (DNS)." In UNIPA Springer Series, 37–46. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81078-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Talebi, Hassan, Ute Mueller, and Raimon Tolosana-Delgado. "Compositional Direct Sampling Simulation." In Use R!, 187–207. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82568-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dewan, Anupam. "Direct Numerical Simulation and Large Eddy Simulation." In Tackling Turbulent Flows in Engineering, 91–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14767-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anupindi, K., and R. D. Sandberg. "An Embedded Flow Simulation Methodology for Flow over Fence Simulations." In Direct and Large-Eddy Simulation X, 297–303. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63212-4_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Casalis, G., and B. Cantaloube. "Receptivity by Direct Numerical Simulation." In Direct and Large-Eddy Simulation I, 237–48. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1000-6_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Myers, M. K. "Direct Simulation: Review and Comments." In ICASE/NASA LaRC Series, 285–93. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8342-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Soiguine, Alex. "Computer Simulation Via Direct Modeling." In Lecture Notes in Electrical Engineering, 123–32. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85437-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weißenfels, Christian. "Modeling Direct Poly Printing." In Simulation of Additive Manufacturing using Meshfree Methods, 185–202. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87337-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Direct simulation"

1

Singh, Pushpendra, and Nadine Aubry. "Direct Simulation of Electrorheological Suspensions." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61527.

Full text
Abstract:
A numerical scheme based on the distributed Lagrange multiplier method (DLM) is used to study the motion of particles of a dielectric suspensions subjected to uniform and nonuniform electric fields. The Maxwell stress tensor method is used for computing electrostatic forces. In the point dipole approximation the total electrostatic force acting on a particle can be divided into two distinct contributions, one due to dielectrophoresis and the second due to particle-particle interactions. The former is zero when the applied electric field is uniform and the latter depends on the distance between the particles. In the Maxwell stress tensor approach these two contribution appear together. Simulations show that as expected the error in the point dipole approximation decreases, as the distance between the particles increases.
APA, Harvard, Vancouver, ISO, and other styles
2

Huang Wu and C. J. Foot. "Direct Simulation of Evaporative Cooling." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Radovitzky, Raul, and Alberto Cuitino. "Direct Numerical Simulation of Polycrystals." In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zaleski, Stephane, and Jie LI. "Direct Simulation of Spray Formation." In ICLASS 97. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/iclass-97.1000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

O'Connor, Patrick, Lyle Long, and James Anderson. "The Direct Simulation of Detonations." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-4411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anderson, James B. "Direct Simulation of Pathological Detonations." In RAREFIED GAS DYNAMICS: 23rd International Symposium. AIP, 2003. http://dx.doi.org/10.1063/1.1581547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aslam, Tariq D. "Direct Numerical Simulation of Detonation." In SHOCK COMPRESSION OF CONDENSED MATTER - 2005: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2006. http://dx.doi.org/10.1063/1.2263474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Aijun, Pushpendra Singh, and Nadine Aubry. "Direct Simulation of Electrorheological Suspensions." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/fed-24923.

Full text
Abstract:
Abstract A new distributed multiplier/fictitious (DLM) domain method is developed for direct simulation of electrorheological (ER) suspensions subjected to spatially uniform electrical fields. The method is implemented both in two and three dimensions. The fluid-particle system is treated implicitly using the combined weak formulation described in [1,2]. The governing Navier-Stokes equations for the fluid are solved everywhere, including the interior of the particles. The flow inside the particles is forced to be a rigid body motion by a distribution of Lagrange multipliers. The electrostatic force acting on the polarized spherical particles is modeled based on the point-dipole approximation. Using our code we have studied the time evolution of particle-scale structures of ER suspensions in channels subjected to the pressure driven flow. In our study, the flow direction is perpendicular to that of the electric field. Simulations show that when the hydrodynamic force is zero, or very small compared to the electrostatic force, the particles form chains that are aligned approximately parallel to the direction of electric field. But, when the magnitude of hydrodynamic force is comparable to that of the electrostatic force the particle chains orient at an angle with the direction of the electric field. The angle between the particle chain and the direction of the electric field depends on the relative strengths of the hydrodynamic and electrostatic forces.
APA, Harvard, Vancouver, ISO, and other styles
9

Bella, Gino, and Rossella Rotondi. "GASOLINE DIRECT INJECTION SPRAY SIMULATION." In CHT-04 - Advances in Computational Heat Transfer III. Proceedings of the Third International Symposium. Connecticut: Begellhouse, 2004. http://dx.doi.org/10.1615/ichmt.2004.cht-04.180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Durham, Wayne, John Bolling, and Cory Hann. "Simulator implementation of direct control allocation methods." In Flight Simulation Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-3380.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Direct simulation"

1

H. N. Najm. MPP Direct Numerical Simulation of Diesel Autoignition. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/791301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cloutman, L. D. Direct Numerical Simulation of a Shocked Helium Jet. Office of Scientific and Technical Information (OSTI), February 2002. http://dx.doi.org/10.2172/15005357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ernest, J. B., H. Ghezel-Ayagh, and A. K. Kush. Dynamic simulation of a direct carbonate fuel cell power plant. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

HONARKHAH, Mehrdad, and Jef CAERS. Direct Pattern-based Simulation of Multi-Point Non-Stationary Models. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baganoff, Donald. A Study of Fluid Problems Requiring a Direct Particle Simulation. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada290212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hagenmaier, Mark A., Dean R. Eklund, and Ryan T. Milligan. Improved Simulation of Inflow Distortion for Direct-Connect Scramjet Studies. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada543745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yue, Dick K., and Yuming Liu. Direct Phase-Resolved Simulation of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada613064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yue, Dick K., and Yuming Liu. Direct Phase-Resolved Simulation Of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yue, Dick K., and Yuming Liu. Direct Phase-Resolved Simulation of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada533983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yue, Dick K., and Yuming Liu. A Direct Simulation-Based Study of Radiance in a Dynamic Ocean. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada541129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography