To see the other types of publications on this topic, follow the link: Direct-extrusion 3D-Printing.

Journal articles on the topic 'Direct-extrusion 3D-Printing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Direct-extrusion 3D-Printing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Romanczuk-Ruszuk, Eliza, Bogna Sztorch, Daria Pakuła, Ewa Gabriel, Krzysztof Nowak, and Robert E. Przekop. "3D Printing Ceramics—Materials for Direct Extrusion Process." Ceramics 6, no. 1 (February 1, 2023): 364–85. http://dx.doi.org/10.3390/ceramics6010022.

Full text
Abstract:
Additive manufacturing and 3D printing methods based on the extrusion of material have become very popular in recent years. There are many methods of printing ceramics, but the direct extrusion method gives the largest range of sizes of printed objects and enables scaling of processes also in large-scale applications. Additionally, the application of this method to ceramic materials is of particular importance due to its low cost, ease of use, and high material utilization. The paper presents the most important literature reports on ceramics printed by direct extrusion. The review includes articles written in English and published between 2017 and 2022. The aim of this literature review was to present the main groups of ceramic materials produced by extrusion-based 3D printing.
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Su-Yeon, Chang-Soo Kim, Jean-Ho Park, Jong Beom Lee, Su-Hee Kim, Yun-Sung Han, and Hee-Sung Lee. "Study on the Direct Melting Extrusion Metal 3D Printing Using Induction Heating." Journal of the Korean Society of Manufacturing Technology Engineers 29, no. 1 (February 15, 2020): 66–73. http://dx.doi.org/10.7735/ksmte.2020.29.1.66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vatani, Morteza, and Jae-Won Choi. "Direct-print photopolymerization for 3D printing." Rapid Prototyping Journal 23, no. 2 (March 20, 2017): 337–43. http://dx.doi.org/10.1108/rpj-11-2015-0172.

Full text
Abstract:
Purpose This work aims to present a guideline for ink development used in extrusion-based direct-write (DW) (also referred to as direct-print [DP]) technique and combine the extrusion with instant photopolymerization to present a solvent-free DP photopolymerization (DPP) method to fill the gap between 3D printing and printing multi-functional 3D structures. Design/methodology/approach A DP process called DPP was developed by integration of a screw-driven micro-dispenser into XYZ translation stages. The process was equipped with direct photopolymerization to facilitate the creation of 3D structures. The required characteristics of inks used in this technique were simulated through dispersion of fumed silica particles into photocurable resins to transform them into viscoelastic inks. The characterization method of these inks and the required level of shear thinning and thixotropic properties is presented. Findings Shear thinning and thixotropic properties are necessary components of the inks used in DPP process and other DP techniques. These properties are desirable to facilitate printing and filament shape retention. Extrusion of viscoelastic inks out of a nozzle generates a filament capable of retaining its geometry. Likewise, instant photopolymerization of the dispensed filaments prevents deformation due to the weight of filaments or accumulated weight of layers. Originality/value The DPP process with material-reforming methods has been shown, where there remain many shortcomings in realizing a DP-based 3D printing process with instant photopolymerization in existing literature, as well as a standard guideline and material requirements. The suggested method can be extended to develop a new commercial 3D printing system and printable inks to create various functional 3D structures including sensors, actuators and electronics, where nanoparticles are involved for their functionalities. Particularly, an original contribution to the determination of a rheological property of an ink is provided.
APA, Harvard, Vancouver, ISO, and other styles
4

Azad, Mohammad A., Deborah Olawuni, Georgia Kimbell, Abu Zayed Md Badruddoza, Md Shahadat Hossain, and Tasnim Sultana. "Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective." Pharmaceutics 12, no. 2 (February 3, 2020): 124. http://dx.doi.org/10.3390/pharmaceutics12020124.

Full text
Abstract:
Three dimensional (3D) printing as an advanced manufacturing technology is progressing to be established in the pharmaceutical industry to overcome the traditional manufacturing regime of 'one size fits for all'. Using 3D printing, it is possible to design and develop complex dosage forms that can be suitable for tuning drug release. Polymers are the key materials that are necessary for 3D printing. Among all 3D printing processes, extrusion-based (both fused deposition modeling (FDM) and pressure-assisted microsyringe (PAM)) 3D printing is well researched for pharmaceutical manufacturing. It is important to understand which polymers are suitable for extrusion-based 3D printing of pharmaceuticals and how their properties, as well as the behavior of polymer–active pharmaceutical ingredient (API) combinations, impact the printing process. Especially, understanding the rheology of the polymer and API–polymer mixtures is necessary for successful 3D printing of dosage forms or printed structures. This review has summarized a holistic materials–process perspective for polymers on extrusion-based 3D printing. The main focus herein will be both FDM and PAM 3D printing processes. It elaborates the discussion on the comparison of 3D printing with the traditional direct compression process, the necessity of rheology, and the characterization techniques required for the printed structure, drug, and excipients. The current technological challenges, regulatory aspects, and the direction toward which the technology is moving, especially for personalized pharmaceuticals and multi-drug printing, are also briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Luis, Eric, Houwen Matthew Pan, Swee Leong Sing, Ram Bajpai, Juha Song, and Wai Yee Yeong. "3D Direct Printing of Silicone Meniscus Implant Using a Novel Heat-Cured Extrusion-Based Printer." Polymers 12, no. 5 (May 1, 2020): 1031. http://dx.doi.org/10.3390/polym12051031.

Full text
Abstract:
The first successful direct 3D printing, or additive manufacturing (AM), of heat-cured silicone meniscal implants, using biocompatible and bio-implantable silicone resins is reported. Silicone implants have conventionally been manufactured by indirect silicone casting and molding methods which are expensive and time-consuming. A novel custom-made heat-curing extrusion-based silicone 3D printer which is capable of directly 3D printing medical silicone implants is introduced. The rheological study of silicone resins and the optimization of critical process parameters are described in detail. The surface and cross-sectional morphologies of the printed silicone meniscus implant were also included. A time-lapsed simulation study of the heated silicone resin within the nozzle using computational fluid dynamics (CFD) was done and the results obtained closely resembled real time 3D printing. Solidworks one-convection model simulation, when compared to the on-off model, more closely correlated with the actual probed temperature. Finally, comparative mechanical study between 3D printed and heat-molded meniscus is conducted. The novel 3D printing process opens up the opportunities for rapid 3D printing of various customizable medical silicone implants and devices for patients and fills the current gap in the additive manufacturing industry.
APA, Harvard, Vancouver, ISO, and other styles
6

Petsiuk, Aliaksei, Bharath Lavu, Rachel Dick, and Joshua M. Pearce. "Waste Plastic Direct Extrusion Hangprinter." Inventions 7, no. 3 (August 19, 2022): 70. http://dx.doi.org/10.3390/inventions7030070.

Full text
Abstract:
As the additive manufacturing industry grows, it is compounding the global plastic waste problem. Distributed recycling and additive manufacturing (DRAM) offers an economic solution to this challenge, but it has been relegated to either small-volume 3D printers (limiting waste recycling throughput) or expensive industrial machines (limiting accessibility and lateral scaling). To overcome these challenges, this paper provides proof-of-concept for a novel, open-source hybrid 3D printer that combines a low-cost hanging printer design with a compression-screw-based end-effector that allows for the direct extrusion of recycled plastic waste in large expandable printing volumes. Mechanical testing of the resultant prints from 100% waste plastic, however, showed that combining the challenges of non-uniform feedstocks and a heavy printhead for a hangprinter reduced the strength of the parts compared to fused filament fabrication. The preliminary results are technologically promising, however, and provide opportunities to improve on the open-source design to help process the volumes of waste plastic needed for DRAM to address the negative environmental impacts of global plastic use.
APA, Harvard, Vancouver, ISO, and other styles
7

Kuźmińska, Magdalena, Beatriz C. Pereira, Rober Habashy, Matthew Peak, Mohammad Isreb, Tim D. Gough, Abdullah Isreb, and Mohamed A. Alhnan. "Solvent-free temperature-facilitated direct extrusion 3D printing for pharmaceuticals." International Journal of Pharmaceutics 598 (April 2021): 120305. http://dx.doi.org/10.1016/j.ijpharm.2021.120305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cersoli, Trenton, Alexis Cresanto, Callan Herberger, Eric MacDonald, and Pedro Cortes. "3D Printed Shape Memory Polymers Produced via Direct Pellet Extrusion." Micromachines 12, no. 1 (January 15, 2021): 87. http://dx.doi.org/10.3390/mi12010087.

Full text
Abstract:
Shape memory polymers (SMPs) are materials capable of changing their structural configuration from a fixed shape to a temporary shape, and vice versa when subjected to a thermal stimulus. The present work has investigated the 3D printing process of a shape memory polymer (SMP)-based polyurethane using a material extrusion technology. Here, SMP pellets were fed into a printing unit, and actuating coupons were manufactured. In contrast to the conventional film-casting manufacturing processes of SMPs, the use of 3D printing allows the production of complex parts for smart electronics and morphing structures. In the present work, the memory performance of the actuating structure was investigated, and their fundamental recovery and mechanical properties were characterized. The preliminary results show that the assembled structures were able to recover their original conformation following a thermal input. The printed parts were also stamped with a QR code on the surface to include an unclonable pattern for addressing counterfeit features. The stamped coupons were subjected to a deformation-recovery shape process, and it was observed that the QR code was recognized after the parts returned to their original shape. The combination of shape memory effect with authentication features allows for a new dimension of counterfeit thwarting. The 3D-printed SMP parts in this work were also combined with shape memory alloys to create a smart actuator to act as a two-way switch to control data collection of a microcontroller.
APA, Harvard, Vancouver, ISO, and other styles
9

Jain, Tanmay, William Clay, Yen-Ming Tseng, Apoorva Vishwakarma, Amal Narayanan, Deliris Ortiz, Qianhui Liu, and Abraham Joy. "Role of pendant side-chain length in determining polymer 3D printability." Polymer Chemistry 10, no. 40 (2019): 5543–54. http://dx.doi.org/10.1039/c9py00879a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Revilla-Leon, Marta, Marina Olea-Vielba, Ana Esteso-Díaz, Iñaki Martinez-Klemm, Jose Manuel Reuss Rodriguez-Vilaboa, and Mutlu Özcan. "New fabrication method using additive manufacturing technologies for the pattern of pressed lithium disilicate onlay restorations." Brazilian Dental Science 20, no. 4 (December 20, 2017): 149. http://dx.doi.org/10.14295/bds.2017.v20i4.1364.

Full text
Abstract:
<p>There are 7 categories for the additive manufacturing (AM) technologies and a wide variety of materials that can be used to build a computer aided designed (CAD) 3-Dimensional (3D) object. The present article reviews the main AM processes for polymers for dental applications: stereolithography (SLA), direct light processing (DLP), material jetting (MJ) and material extrusion (ME). The manufacturing process, accuracy and precision of these methods will be reviewed, as well as, their prosthodontic applications.</p><p> </p><p><strong>Keywords: </strong>3D printing; Additive manufacturing technologies; Direct light processing; Fused deposition modelling; Material extrusion; Material jetting; Multijet printing; Prosthodontics; Stereolitography.</p>
APA, Harvard, Vancouver, ISO, and other styles
11

Van Damme, Lana, Emilie Briant, Phillip Blondeel, and Sandra Van Vlierberghe. "Indirect versus direct 3D printing of hydrogel scaffolds for adipose tissue regeneration." MRS Advances 5, no. 17 (2020): 855–64. http://dx.doi.org/10.1557/adv.2020.117.

Full text
Abstract:
ABSTRACTThere exists a need for an innovative reconstructive approach for breast reconstruction, tackling current drawbacks and limitations present in the clinic. In this respect, adipose tissue engineering could offer a promising alternative. We have previously shown that methacrylamide-functionalized gelatin scaffolds are suitable to support the adhesion of adipose tissue-derived stem cells as well as their subsequent differentiation into the adipogenic lineage. The current paper aims to compare different techniques to produce such scaffolds including direct versus indirect 3D printing. Extrusion-based (direct) 3D printing was compared to indirect 3D printing exploiting a polylactic acid (PLA) sacrificial mould, thereby focussing on the physico-chemical characteristics of the obtained scaffolds. The results indicate that similar properties can be achieved irrespective of the technique applied. It can therefore be concluded that indirect 3D printing could offer some benefits over direct additive manufacturing (AM) as a more complex design can be created while materials that were previously unsuited for direct printing because of limitations associated with their characteristics (e.g. low viscosity), could potentially be applied as starting materials for indirect 3D printing to generate porous constructs with full control over their design.
APA, Harvard, Vancouver, ISO, and other styles
12

Alonso Madrid, Javier, Guillermo Sotorrío Ortega, Javier Gorostiza Carabaño, Nils O. E. Olsson, and José Antonio Tenorio Ríos. "3D Claying: 3D Printing and Recycling Clay." Crystals 13, no. 3 (February 22, 2023): 375. http://dx.doi.org/10.3390/cryst13030375.

Full text
Abstract:
Clay is of great interest as a 3D printing material thanks to its ease of use, recyclability and reusability. This paper analyses the technical aspects of the whole printing process. The behaviour of 3D printing clay is studied with respect to the environment and its specific application as a temporary or definitive formwork system for cement parts. The study addresses the performance of clay and the loss of its properties and characteristics according to the type of protection, whether it is in direct contact with air or cement, or protected with plastics, metal sheets, or combinations of both. A 3D printing system with various printers and 3D models has been considered, observing a direct relationship between the prototype shape, extrusion process and resulting material. The most important variables in 3D printing have been considered: layer height, line thickness, base definition, total model height, overhang angles, overlap between layers, etc. The main technical aspects have been analysed such as raw material properties, kneading, process control, post-treatments and material hardening. As a natural material, clay can be reused indefinitely under certain conditions to be part of a circular economy with low energy consumption and minimal resources. It is concluded that the option of using ceramics in 3D printing for very diverse uses in the architecture, engineering & construction (AEC) sector is very promising due to their ease of implementation, recycling capability and suitability to different environments.
APA, Harvard, Vancouver, ISO, and other styles
13

Crisostomo, Jan Lloyd Buenaventura, and John Ryan Cortez Dizon. "3D Printing Applications in Agriculture, Food Processing, and Environmental Protection and Monitoring." Advance Sustainable Science, Engineering and Technology 3, no. 2 (November 6, 2021): 0210201. http://dx.doi.org/10.26877/asset.v3i2.9627.

Full text
Abstract:
This paper presents a mini review of the applications of 3D printing, formally known as additive manufacturing, in the fields of agriculture, food processing, and the environment protection and monitoring. The paper discusses materials used in 3D printing, the different printing technologies employed in the process, as well as its prospects. PLA and ABS thermoplastics find the most application in the field of agriculture as they are affordable filaments available in the market and they are relatively easy to print. The direct extrusion of food helps people with swallowing difficulties increase their food intake as well as customize their diet. As for the environment, applications in water desalination and air quality monitoring are among the use cases of 3D printing presented in this paper.
APA, Harvard, Vancouver, ISO, and other styles
14

Przekop, Robert E., Ewa Gabriel, Daria Pakuła, and Bogna Sztorch. "Liquid for Fused Deposition Modeling Technique (L-FDM)—A Revolution in Application Chemicals to 3D Printing Technology: Color and Elements." Applied Sciences 13, no. 13 (June 21, 2023): 7393. http://dx.doi.org/10.3390/app13137393.

Full text
Abstract:
This article presents a novel 3D printing technique called L-FDM (liquid for fused deposition modeling), which is based on the deposition of molten thermoplastic material. The new method allows for the direct introduction of chemicals and polymer filament modifications during the printing process. In contrast to traditional incremental methods, L-FDM eliminates the need for extra granulating, extrusion, and processing equipment, making it possible to introduce chemical additives to the polymer matrix directly. This opens up exciting possibilities for chemical laboratories to test and experiment with new and known chemicals through 3D printing. The article discusses the technical aspects of L-FDM and its potential applications and provides practical examples of direct filament modifications using the technique. The results of these modifications were verified using a colorimeter, electron microscopy (SEM/EDS), and optical microscopy.
APA, Harvard, Vancouver, ISO, and other styles
15

Ahammed, Syed Riyaz, and Ayyappan Susila Praveen. "Optimization parameters effects on electrical conductivity of 3D printed circuits fabricated by direct ink writing method using functionalized multiwalled carbon nanotubes and polyvinyl alcohol conductive ink." International Journal for Simulation and Multidisciplinary Design Optimization 12 (2021): 7. http://dx.doi.org/10.1051/smdo/2021007.

Full text
Abstract:
Fabrication of electronic circuits and the effects of optimization parameters on electrical conductivity of the printed circuits fabricated by direct ink writing method (D.I.W); one of the novel methods in 3D printing technologies is discussed in this work. This paper focuses on fabrication of electronic circuits using F-MWCNT/PVA conductive ink and analyses the effect of input printing process parameters namely nozzle diameter, extrusion pressure, printing speed on evaluating the electrical conductivity. Box–Behnken approach is followed to generate the levels of experiments and the performance of developed model is assessed using ANOVA. Response surface method is incorporated to find the influencing parameters on electrical conductivity response. Two-point probe measurement method is performed to analyse the output response of the printed electronic circuits. Optimized printing parameters such as nozzle diameter of 0.8 mm, extrusion pressure of 0.1 MPa and printing speed of 4 mm/sec are found to be the best the for printing electronic circuits with high electrical conductivity.
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Keda, Jinghong Ding, Yuxiong Guo, Hongchao Wu, Wenwen Wang, Jiaqi Ji, Qi Pei, Chenliang Gong, Zhongying Ji, and Xiaolong Wang. "Direct Ink Writing of Phenylethynyl End-Capped Oligoimide/SiO2 to Additively Manufacture High-Performance Thermosetting Polyimide Composites." Polymers 14, no. 13 (June 30, 2022): 2669. http://dx.doi.org/10.3390/polym14132669.

Full text
Abstract:
The three-dimensional (3D) printing of a SiO2-filled thermosetting polyimide (SiO2@TSPI) composite with outstanding performance is realized via the direct ink writing (DIW) of polyamide acid (PAA) composite ink and thermal treatment conducted thereafter. The composite ink consists of phenylethynyl-terminated PAA and silica nanoparticles, where the SiO2 nanoparticles serve as the rheology modifier that is necessary for the DIW technique to obtain self-supporting feedstock during 3D printing and the reinforcement filler that is used to enhance the performance of the final composite. As a result, printed parts with complex geometry and robust thermal stability are obtained. Due to the extrusion-based DIW technique, the printed structures exhibit anisotropic mechanical strength that highly depends on printing roads. This simple and convenient means of realizing 3D structures of thermosetting polyimides is a promising strategy in aerospace and other fields.
APA, Harvard, Vancouver, ISO, and other styles
17

Reddy Dumpa, Nagi, Suresh Bandari, and Michael A. Repka. "Novel Gastroretentive Floating Pulsatile Drug Delivery System Produced via Hot-Melt Extrusion and Fused Deposition Modeling 3D Printing." Pharmaceutics 12, no. 1 (January 8, 2020): 52. http://dx.doi.org/10.3390/pharmaceutics12010052.

Full text
Abstract:
This study was performed to develop novel core-shell gastroretentive floating pulsatile drug delivery systems using a hot-melt extrusion-paired fused deposition modeling (FDM) 3D printing and direct compression method. Hydroxypropyl cellulose (HPC) and ethyl cellulose (EC)-based filaments were fabricated using hot-melt extrusion technology and were utilized as feedstock material for printing shells in FDM 3D printing. The directly compressed theophylline tablet was used as the core. The tablet shell to form pulsatile floating dosage forms with different geometries (shell thickness: 0.8, 1.2, 1.6, and 2.0 mm; wall thickness: 0, 0.8, and 1.6 mm; and % infill density: 50, 75, and 100) were designed, printed, and evaluated. All core-shell tablets floated without any lag time and exhibited good floating behavior throughout the dissolution study. The lag time for the pulsatile release of the drug was 30 min to 6 h. The proportion of ethyl cellulose in the filament composition had a significant (p < 0.05) effect on the lag time. The formulation (2 mm shell thickness, 1.6 mm wall thickness, 100% infill density, 0.5% EC) with the desired lag time of 6 h was selected as an optimized formulation. Thus, FDM 3D printing is a potential technique for the development of complex customized drug delivery systems for personalized pharmacotherapy.
APA, Harvard, Vancouver, ISO, and other styles
18

Park, Jung Bin, Seok Hwan An, Jae Woong Jung, and Jea Uk Lee. "Three-Dimensional Printing of Recycled Polypropylene and Activated Carbon Coatings for Harmful Gas Adsorption and Antibacterial Properties." Polymers 15, no. 5 (February 26, 2023): 1173. http://dx.doi.org/10.3390/polym15051173.

Full text
Abstract:
In recent years, the utilization of three-dimensional (3D) printing has been expanding due to advances in technology and economic efficiency. One of the 3D printing technologies is fused deposition modeling, which can be used to create different kinds of products or prototypes from various polymer filaments. In this study, the activated carbon (AC) coating was introduced to the 3D outputs printed using recycled polymer materials to impart multi-functions such as adsorption of harmful gas and antimicrobial activities. A filament of uniform diameter (1.75 μm) and a filter template in the form of a 3D fabric shape were prepared through the extrusion and 3D printing processes, respectively, of the recycled polymer. In the next process, the 3D filter was developed by coating the nanoporous AC, produced from the pyrolysis fuel oil and waste PET, on the 3D filter template through direct coating. The 3D filters coated with the nanoporous activated carbon showed the enhanced adsorption capacity of 1038.74 mg of SO2 gas and the antibacterial properties of 49% removal of E. coli bacteria. As a model system, a functional gas mask that has harmful gas adsorption abilities and antibacterial properties has been produced by a 3D printing process.
APA, Harvard, Vancouver, ISO, and other styles
19

Kam, Doron, Michael Chasnitsky, Chen Nowogrodski, Ido Braslavsky, Tiffany Abitbol, Shlomo Magdassi, and Oded Shoseyov. "Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall." Colloids and Interfaces 3, no. 2 (April 19, 2019): 46. http://dx.doi.org/10.3390/colloids3020046.

Full text
Abstract:
Aerogel objects inspired by plant cell wall components and structures were fabricated using extrusion-based 3D printing at cryogenic temperatures. The printing process combines 3D printing with the alignment of rod-shaped nanoparticles through the freeze-casting of aqueous inks. We have named this method direct cryo writing (DCW) as it encompasses in a single processing step traditional directional freeze casting and the spatial fidelity of 3D printing. DCW is demonstrated with inks that are composed of an aqueous mixture of cellulose nanocrystals (CNCs) and xyloglucan (XG), which are the major building blocks of plant cell walls. Rapid fixation of the inks is achieved through tailored rheological properties and controlled directional freezing. Morphological evaluation revealed the role of ice crystal growth in the alignment of CNCs and XG. The structure of the aerogels changed from organized and tubular to disordered and flakey pores with an increase in XG content. The internal structure of the printed objects mimics the structure of various wood species and can therefore be used to create wood-like structures via additive manufacturing technologies using only renewable wood-based materials.
APA, Harvard, Vancouver, ISO, and other styles
20

Cho, Hui-Won, Seung-Hoon Baek, Beom-Jin Lee, and Hyo-Eon Jin. "Orodispersible Polymer Films with the Poorly Water-Soluble Drug, Olanzapine: Hot-Melt Pneumatic Extrusion for Single-Process 3D Printing." Pharmaceutics 12, no. 8 (July 22, 2020): 692. http://dx.doi.org/10.3390/pharmaceutics12080692.

Full text
Abstract:
Amorphous solid dispersions (ASDs) improve the oral delivery of poorly water-soluble drugs. ASDs of olanzapine (OLZ), which have a high melting point and low solubility, are performed using a complicated process. Three-dimensional (3D) printing based on hot-melt pneumatic extrusion (HMPE) is a simplified method for producing ASDs. Unlike general 3D printing, printlet extrusion is possible without the preparation of drug-loaded filaments. By heating powder blends, direct fused deposition modeling (FDM) printing through a nozzle is possible, and this step produces ASDs of drugs. In this study, we developed orodispersible films (ODFs) loaded with OLZ as a poorly water-soluble drug. Various ratios of film-forming polymers and plasticizers were investigated to enhance the printability and optimize the printing temperature. Scanning electron microscopy (SEM) showed the surface morphology of the film for the optimization of the polymer carrier ratios. Differential scanning calorimetry (DSC) was used to evaluate thermal properties. Powder X-ray diffraction (PXRD) confirmed the physical form of the drug during printing. The 3D printed ODF formulations successfully loaded ASDs of OLZ using HMPE. Our ODFs showed fast disintegration patterns within 22 s, and rapidly dissolved and reached up to 88% dissolution within 5 min in the dissolution test. ODFs fabricated using HMPE in a single process of 3D printing increased the dissolution rates of the poorly water-soluble drug, which could be a suitable formulation for fast drug absorption. Moreover, this new technology showed prompt fabrication feasibility of various formulations and ASD formation of poorly water-soluble drugs as a single process. The immediate dissolution within a few minutes of ODFs with OLZ, an atypical antipsychotic, is preferred for drug compliance and administration convenience.
APA, Harvard, Vancouver, ISO, and other styles
21

Ameeduzzafar, Nabil K. Alruwaili, Md Rizwanullah, Syed Nasir Abbas Bukhari, Mohd Amir, Muhammad Masood Ahmed, and Mohammad Fazil. "3D Printing Technology in Design of Pharmaceutical Products." Current Pharmaceutical Design 24, no. 42 (March 20, 2019): 5009–18. http://dx.doi.org/10.2174/1381612825666190116104620.

Full text
Abstract:
Background: Three-dimensional printing (3DP) is a novel technology for fabrication of personalized medicine. As of late, FDA affirmed 3D printed tranquilize item in August 2015, which is characteristic of another section of Pharmaceutical assembling. 3DP incorporates a wide range of assembling procedures, which are altogether founded on computer-aided design (CAD), and controlled deposition of materials (layer-by-layer) to make freestyle geometries. Conventionally, many pharmaceutical processes like compressed tablet have been used from many years for the development of tablet with established regulatory pathways. But this simple process is outdated in terms of process competence and manufacturing flexibility (design space). 3DP is a new technology for the creation of plan, proving to be superior for complex products, customized items and items made on-request. It creates new opportunities for improving efficacy, safety, and convenience of medicines. Method: There are many of the 3D printing technology used for the development of personalized medicine on demand for better treatment like 3D powder direct printing technology, fused-filament 3D printing, 3D extrusion printer, piezoelectric inkjet printer, fused deposition 3D printing, 3D printer, ink-jet printer, micro-drop inkjet 3DP, thermal inkjet printer, multi-nozzle 3D printer, stereolithographic 3D printer. Result: This review highlights features how item and process comprehension can encourage the improvement of a control technique for various 3D printing strategies. Conclusion: It is concluded that the 3D printing technology is a novel potential for manufacturing of personalized dose medicines, due to better patient compliance which can be prepared when needed.
APA, Harvard, Vancouver, ISO, and other styles
22

Jain, Tanmay, Yen-Ming Tseng, Chinnapatch Tantisuwanno, Joshua Menefee, Aida Shahrokhian, Irada Isayeva, and Abraham Joy. "Synthesis, Rheology, and Assessment of 3D Printability of Multifunctional Polyesters for Extrusion-Based Direct-Write 3D Printing." ACS Applied Polymer Materials 3, no. 12 (November 19, 2021): 6618–31. http://dx.doi.org/10.1021/acsapm.1c01275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Khondoker, Mohammad A. H., Adam Ostashek, and Dan Sameoto. "Direct 3D Printing of Stretchable Circuits via Liquid Metal Co‐Extrusion Within Thermoplastic Filaments." Advanced Engineering Materials 21, no. 7 (April 10, 2019): 1900060. http://dx.doi.org/10.1002/adem.201900060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Razzaq, Muhammad Yasar, Joamin Gonzalez-Gutierrez, Gregory Mertz, David Ruch, Daniel F. Schmidt, and Stephan Westermann. "4D Printing of Multicomponent Shape-Memory Polymer Formulations." Applied Sciences 12, no. 15 (August 5, 2022): 7880. http://dx.doi.org/10.3390/app12157880.

Full text
Abstract:
Four-dimensional (4D) printing technology, as a next-generation additive manufacturing method, enables printed objects to further change their shapes, functionalities, or properties upon exposure to external stimuli. The 4D printing of programmable and deformable materials such as thermo-responsive shape-memory polymers (trSMPs), which possess the ability to change shape by exposure to heat, has attracted particular interest in recent years. Three-dimensional objects based on SMPs have been proposed for various potential applications in different fields, including soft robotics, smart actuators, biomedical and electronics. To enable the manufacturing of complex multifunctional 3D objects, SMPs are often coupled with other functional polymers or fillers during or before the 3D printing process. This review highlights the 4D printing of state-of-the-art multi-component SMP formulations. Commonly used 4D printing technologies such as material extrusion techniques including fused filament fabrication (FFF) and direct ink writing (DIW), as well as vat photopolymerization techniques such as stereolithography (SLA), digital light processing (DLP), and multi-photon polymerization (MPP), are discussed. Different multicomponent SMP systems, their actuation methods, and potential applications of the 3D printed objects are reviewed. Finally, current challenges and prospects for 4D printing technology are summarized.
APA, Harvard, Vancouver, ISO, and other styles
25

Komorowski, Paweł, Mateusz Surma, Michał Walczakowski, Przemysław Zagrajek, and Agnieszka Siemion. "Off-Axis Diffractive Optics for Compact Terahertz Detection Setup." Applied Sciences 10, no. 23 (November 30, 2020): 8594. http://dx.doi.org/10.3390/app10238594.

Full text
Abstract:
Medical and many other applications require small-volume setups enabling terahertz imaging. Therefore, we aim to develop a device for the in-reflection examination of the samples. Thus, in this article, we focus on the diffractive elements for efficient redirection and focusing of the THz radiation. A terahertz diffractive optical structure has been designed, optimized, manufactured (using extrusion-based 3D printing) and tested. Two manufacturing methods have been used—direct printing of the structures from PA12, and casting of the paraffin structures out of 3D-printed molds. Also, the limitations of the off-axis focusing have been discussed. To increase the efficiency, an iterative algorithm has been proposed that optimizes off-axis structures to focus the radiation into small focal spots located far from the optical axis, at an angle of more than 30 degrees. Moreover, the application of higher-order kinoform structure design allowed the maintaining of the smallest details of the manufactured optical element, using 3D printing techniques.
APA, Harvard, Vancouver, ISO, and other styles
26

Ciornei, Mirela, Răzvan Ionuț Iacobici, Ionel Dănuț Savu, and Dalia Simion. "FDM 3D Printing Process - Risks and Environmental Aspects." Key Engineering Materials 890 (June 23, 2021): 152–56. http://dx.doi.org/10.4028/www.scientific.net/kem.890.152.

Full text
Abstract:
The application of the 3D printing processes is continuously increasing due to their large number of technical and economic advantages when produce prototypes, but in the mass fabrication as well, especially for metal printing of low dimension products. The process produces pollution as all technological processes. Noise, fume and polymer wastes are the main elements which exit from the process and they are not products. The types and the volumes of those pollution emissions depend on the process parameters. The paper presents the results of FDM process emissions analysis. It was recorded the noise for different stages of the printer functioning. It was measured the volume and the contents of the fume produced during the extrusion of the polymer, for PLA polymer and for ABS polymer filaments. Specific risks were analysed and conclusions were reported. The measurement was done for a random chosen product and the results were compared with the pollutant emissions from traditional technological processes applied to erect the same type of product. It has been concluded that the noise emitted during the FDM printing is about 82-85% of the noise produced when apply milling to create similar shapes and dimensions (it was recorded values for the sound pressure in a large range: 42-68 dB, depending on the working regime). Regarding the fume emission, the intensity of emission was up to 40% higher in the FDM process comparing to the milling process. That was explained as being a direct result of the fluid-viscous state in which the material is put during the printing process. When discuss about the risks, most of the main identified risks in the milling and/or extrusion process were almost inexistent in the FDM printing. Electrical injuries and heat injuries are the main risks to which the operator is exposed. Mechanical injuries are sensitively lower than in the traditional processes, as milling The FDM process is safer and produces lower material wastes. It can be concluded that the FDM printing process has lower impact with the environment and with the operator.
APA, Harvard, Vancouver, ISO, and other styles
27

Boniatti, Janine, Patricija Januskaite, Laís B. da Fonseca, Alessandra L. Viçosa, Fábio C. Amendoeira, Catherine Tuleu, Abdul W. Basit, Alvaro Goyanes, and Maria-Inês Ré. "Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations." Pharmaceutics 13, no. 8 (July 21, 2021): 1114. http://dx.doi.org/10.3390/pharmaceutics13081114.

Full text
Abstract:
For the last 40 years, praziquantel has been the standard treatment for schistosomiasis, a neglected parasitic disease affecting more than 250 million people worldwide. However, there is no suitable paediatric formulation on the market, leading to off-label use and the splitting of commercial tablets for adults. In this study, we use a recently available technology, direct powder extrusion (DPE) three-dimensional printing (3DP), to prepare paediatric Printlets™ (3D printed tablets) of amorphous solid dispersions of praziquantel with Kollidon® VA 64 and surfactants (Span™ 20 or Kolliphor® SLS). Printlets were successfully printed from both pellets and powders obtained from extrudates by hot melt extrusion (HME). In vitro dissolution studies showed a greater than four-fold increase in praziquantel release, due to the formation of amorphous solid dispersions. In vitro palatability data indicated that the printlets were in the range of praziquantel tolerability, highlighting the taste masking capabilities of this technology without the need for additional taste masking excipients. This work has demonstrated the possibility of 3D printing tablets using pellets or powder forms obtained by HME, avoiding the use of filaments in fused deposition modelling 3DP. Moreover, the main formulation hurdles of praziquantel, such as low drug solubility, inadequate taste, and high and variable dose requirements, can be overcome using this technology.
APA, Harvard, Vancouver, ISO, and other styles
28

Singamneni, Sarat, Malaya Prasad Behera, Derryn Truong, Marie Joo Le Guen, Elspeth Macrae, and Kim Pickering. "Direct extrusion 3D printing for a softer PLA-based bio-polymer composite in pellet form." Journal of Materials Research and Technology 15 (November 2021): 936–49. http://dx.doi.org/10.1016/j.jmrt.2021.08.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Goyanes, Alvaro, Nour Allahham, Sarah J. Trenfield, Edmont Stoyanov, Simon Gaisford, and Abdul W. Basit. "Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process." International Journal of Pharmaceutics 567 (August 2019): 118471. http://dx.doi.org/10.1016/j.ijpharm.2019.118471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jain, Shubham, Mohammed Ahmad Yassin, Tiziana Fuoco, Hailong Liu, Samih Mohamed-Ahmed, Kamal Mustafa, and Anna Finne-Wistrand. "Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification." Journal of Tissue Engineering 11 (January 2020): 204173142095431. http://dx.doi.org/10.1177/2041731420954316.

Full text
Abstract:
We present a solution to regenerate adipose tissue using degradable, soft, pliable 3D-printed scaffolds made of a medical-grade copolymer coated with polydopamine. The problem today is that while printing, the medical grade copolyesters degrade and the scaffolds become very stiff and brittle, being not optimal for adipose tissue defects. Herein, we have used high molar mass poly(L-lactide-co-trimethylene carbonate) (PLATMC) to engineer scaffolds using a direct extrusion-based 3D printer, the 3D Bioplotter®. Our approach was first focused on how the printing influences the polymer and scaffold’s mechanical properties, then on exploring different printing designs and, in the end, on assessing surface functionalization. Finite element analysis revealed that scaffold’s mechanical properties vary according to the gradual degradation of the polymer as a consequence of the molar mass decrease during printing. Considering this, we defined optimal printing parameters to minimize material’s degradation and printed scaffolds with different designs. We subsequently functionalized one scaffold design with polydopamine coating and conducted in vitro cell studies. Results showed that polydopamine augmented stem cell proliferation and adipogenic differentiation owing to increased surface hydrophilicity. Thus, the present research show that the medical grade PLATMC based scaffolds are a potential candidate towards the development of implantable, resorbable, medical devices for adipose tissue regeneration.
APA, Harvard, Vancouver, ISO, and other styles
31

Elbl, Jan, Martin Veselý, Dagmar Blaháčková, Jaroslav Ondruš, Pavel Kulich, Eliška Mašková, Josef Mašek, and Jan Gajdziok. "Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing." Pharmaceutics 15, no. 2 (February 20, 2023): 714. http://dx.doi.org/10.3390/pharmaceutics15020714.

Full text
Abstract:
The direct tailoring of the size, composition, or number of layers belongs to the advantages of 3D printing employment in producing orodispersible films (ODFs) compared to the frequently utilized solvent casting method. This study aimed to produce porous ODFs as a substrate for medicated ink deposited by a 2D printer. The innovative semi-solid extrusion 3D printing method was employed to produce multilayered ODFs, where the bottom layer assures the mechanical properties. In contrast, the top layer provides a porous structure for ink entrapment. Hydroxypropyl methylcellulose and polyvinyl alcohol were utilized as film-forming polymers, glycerol as a plasticizer, and sodium starch glycolate as a disintegrant in the bottom matrix. Several porogen agents (Aeroperl® 300, Fujisil®, Syloid® 244 FP, Syloid® XDP 3050, Neusilin® S2, Neusilin® US2, and Neusilin® UFL2) acted as porosity enhancers in the two types of top layer. ODFs with satisfactory disintegration time were prepared. The correlation between the porogen content and the mechanical properties was proved. A porous ODF structure was detected in most samples and linked to the porogen content. SSE 3D printing represents a promising preparation method for the production of porous ODFs as substrates for subsequent drug deposition by 2D printing, avoiding the difficulties arising in casting or printing medicated ODFs directly.
APA, Harvard, Vancouver, ISO, and other styles
32

Menshutina, Natalia, Andrey Abramov, Maria Okisheva, and Pavel Tsygankov. "Investigation of the 3D Printing Process Utilizing a Heterophase System." Gels 9, no. 7 (July 12, 2023): 566. http://dx.doi.org/10.3390/gels9070566.

Full text
Abstract:
Direct ink writing (DIW) requires careful selection of ink composition with specific rheological properties, and it has limitations, such as the inability to create overhanging parts or branched geometries. This study presents an investigation into enhancing the 3D printing process through the use of a heterophase system, aiming to overcome these limitations. A modification was carried out in the 3D printer construction, involving adjustments to the structural elements responsible for the extrusion device’s movement. Additionally, a method for obtaining a heterophase system based on gelatin microparticles was developed to enable the 3D printing process with the upgraded printer. The structure and rheological properties of the heterophase system, varying in gelatin concentration, were thoroughly examined. The material’s viscosity ranged from 5.4 to 32.8 kPa·s, exhibiting thixotropic properties, pseudoplastic behavior, and long-term stability at 20 °C. The developed 3D printing technology was successfully implemented using a heterophase system based on different gelatin concentrations. The highest product quality was achieved with a heterophase system consisting of 4.5 wt.% gelatin, which exhibited a viscosity of 22.4 kPa·s, enabling the production of products without spreading or compromising geometrical integrity.
APA, Harvard, Vancouver, ISO, and other styles
33

Wu, Ying, Chao An, and Yaru Guo. "3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications." Materials 16, no. 16 (August 18, 2023): 5681. http://dx.doi.org/10.3390/ma16165681.

Full text
Abstract:
Three-dimensional (3D) printing, alternatively known as additive manufacturing, is a transformative technology enabling precise, customized, and efficient manufacturing of components with complex structures. It revolutionizes traditional processes, allowing rapid prototyping, cost-effective production, and intricate designs. The 3D printed graphene-based materials combine graphene’s exceptional properties with additive manufacturing’s versatility, offering precise control over intricate structures with enhanced functionalities. To gain comprehensive insights into the development of 3D printed graphene and graphene/polymer composites, this review delves into their intricate fabrication methods, unique structural attributes, and multifaceted applications across various domains. Recent advances in printable materials, apparatus characteristics, and printed structures of typical 3D printing techniques for graphene and graphene/polymer composites are addressed, including extrusion methods (direct ink writing and fused deposition modeling), photopolymerization strategies (stereolithography and digital light processing) and powder-based techniques. Multifunctional applications in energy storage, physical sensor, stretchable conductor, electromagnetic interference shielding and wave absorption, as well as bio-applications are highlighted. Despite significant advancements in 3D printed graphene and its polymer composites, innovative studies are still necessary to fully unlock their inherent capabilities.
APA, Harvard, Vancouver, ISO, and other styles
34

Maurel, Alexis, Ana Cristina Martinez, Sylvie Grugeon, Stephane Panier, Loic Dupont, Michel Armand, Roberto Russo, et al. "(Battery Division Postdoctoral Associate Research Award Sponsored by MTI Corporation and the Jiang Family Foundation) 3D Printing of Batteries: Fiction or Reality?" ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 214. http://dx.doi.org/10.1149/ma2022-023214mtgabs.

Full text
Abstract:
Motivated by the request to build shape-conformable flexible, wearable and customizable batteries while maximizing the energy storage and electrochemical performances, additive manufacturing (AM) appears as a revolutionary discipline. Battery components such as electrodes, separator, electrolyte, current collectors and casing can be tailored with any shape, allowing the direct incorporation of batteries and all electronics within the final three-dimensional object. AM also paves the way toward the implementation of complex 3D electrode architectures that could enhance significantly the power battery performances. Transitioning from conventional 2D to complex 3D lithium-ion battery (LIB) architectures will increase the electrochemically active surface area, enhance the Li+ diffusion paths, thus leading to improved specific capacity and power performance [1]. Our recent modeling studies [2] involving the simulation of a classical Ragone plot illustrated that a gyroid 3D battery architecture has +158% performance at a high current density of 6C, in comparison to planar geometry. In this presentation, an overview of current trends in energy storage 3D printing will be discussed [3-11]. A summary of our recent works on lithium-ion battery 3D printing via Thermoplastic Material Extrusion / Fused Deposition Modeling will be presented [12-16]. The development of printable composite filaments (Graphite-, LiFePO4-, Li2TP-, PEO/LiTFSI-, SiO2-, Ag/Cu-based) corresponding to each part of a LIB (electrodes, electrolyte, separator, current collectors), and the importance of introducing a plasticizer (polyethylene glycol dimethyl ether average Mn 500 for polylactic acid) as an additive to enhance the printability will be addressed. Printing of the complete LIB in a single step using multi-material printing options, and the implementation of a solvent-free protocol [14] will also be discussed. Second part of this presentation will be dedicated to AM of batteries by means of Vat Photopolymerization (VPP) processes, including stereolithography, digital light processing and two-photon polymerization (offering a greater resolution down to 0.1μm), to print high resolution battery components [10]. Composite resins formulation approaches based on the introduction of solid battery particles or precursor salts will be introduced [17, 18]. Finally, an overview of our ongoing project dedicated to AM of sodium-ion batteries from resources available on the Moon and Mars will be presented. Due to its relative abundance in the Lunar regolith, the development of a composite photocurable resin loaded with TiO2 negative electrode material and conductive additives, to feed a VPP printer, will be discussed [18]. [1] Long et al., Three-dimensional battery architectures, Chemical Reviews 104(10) (2004) 4463-4492. [2] Maurel et al., Considering lithium-ion battery 3D-printing via thermoplastic material extrusion and polymer powder bed fusion, Additive Manufacturing (2020) 101651. [3] Maurel et al., Overview on Lithium-Ion Battery 3D-Printing By Means of Material Extrusion, ECS Transactions 98(13) (2020) 3-21. [4] Ragones et al., Towards smart free form-factor 3D printable batteries, Sustainable Energy & Fuels 2(7) (2018) 1542-1549. [5] Reyes et al., Three-Dimensional Printing of a Complete Lithium Ion Battery with Fused Filament Fabrication, ACS Applied Energy Materials 1(10) (2018) 5268-5279. [6] Yee et al., Hydrogel-Based Additive Manufacturing of Lithium Cobalt Oxide, Advanced Materials Technologies 6(2) (2021). [7] Saccone et al., Understanding and mitigating mechanical degradation in lithium–sulfur batteries: additive manufacturing of Li2S composites and nanomechanical particle compressions, Journal of Materials Research (2021). [8] Tagliaferri et al., Direct ink writing of energy materials, Materials Advances 2(2) (2021) 25. [9] Sun et al., 3D Printing of Interdigitated Li-Ion Microbattery Architectures, Advanced Materials 25(33) (2013) 4539-4543. [10] Maurel et al., Toward High Resolution 3D Printing of Shape-Conformable Batteries via Vat Photopolymerization: Review and Perspective, IEEE Access 9 (2021) 140654-140666. [11] Seol et al., All-Printed In-Plane Supercapacitors by Sequential Additive Manufacturing Process, Acs Applied Energy Materials 3(5) (2020) 4965-4973. [12] Maurel et al., Highly Loaded Graphite-Polylactic Acid Composite-Based Filaments for Lithium-Ion Battery Three-Dimensional Printing, Chemistry of Materials 30(21) (2018) 7484-7493. [13] Maurel et al., Three-Dimensional Printing of a LiFePO4/Graphite Battery Cell via Fused Deposition Modeling, Scientific Reports 9(1) (2019) 18031. [14] Maurel et al., Environmentally Friendly Lithium-Terephthalate/Polylactic Acid Composite Filament Formulation for Lithium-Ion Battery 3D-Printing via Fused Deposition Modeling, ECS Journal of Solid State Science and Technology 10(3) (2021) 037004. [15] Maurel et al., Poly(Ethylene Oxide)-LiTFSI Solid Polymer Electrolyte Filaments for Fused Deposition Modeling Three-Dimensional Printing, Journal of the Electrochemical Society 167(7) (2020). [16] Maurel et al., Ag-Coated Cu/Polylactic Acid Composite Filament for Lithium and Sodium-Ion Battery Current Collector Three-Dimensional Printing via Thermoplastic Material Extrusion, Frontiers in Energy Research 9(70) (2021). [17] Martinez et al., Additive Manufacturing of LiNi1/3Mn1/3Co1/3O2 battery electrode material via vat photopolymerization precursor approach, (submitted). [18] Maurel et al., Vat Photopolymerization Additive Manufacturing of Sodium-Ion Battery TiO2 Negative Electrodes from Lunar In-Situ Resources, (submitted).
APA, Harvard, Vancouver, ISO, and other styles
35

Rosenbaum, Christoph, Linus Großmann, Ellen Neumann, Petra Jungfleisch, Emre Türeli, and Werner Weitschies. "Development of a Hot-Melt-Extrusion-Based Spinning Process to Produce Pharmaceutical Fibers and Yarns." Pharmaceutics 14, no. 6 (June 10, 2022): 1229. http://dx.doi.org/10.3390/pharmaceutics14061229.

Full text
Abstract:
Fibers and yarns are part of everyday life. So far, fibers that are also used pharmaceutically have mainly been produced by electrospinning. The common use of spinning oils and the excipients they contain, in connection with production by melt extrusion, poses a regulatory challenge for pharmaceutically usable fibers. In this publication, a newly developed small-scale direct-spinning melt extrusion system is described, and the pharmaceutically useful polyvinyl filaments produced with it are characterized. The major parts of the system were newly developed or extensively modified and manufactured cost-effectively within a short time using rapid prototyping (3D printing) from various materials. For example, a stainless-steel spinneret was developed in a splice design for a table-top melt extrusion system that can be used in the pharmaceutical industry. The direct processing of the extruded fibers was made possible by a spinning system developed called Spinning-Rosi, which operates continuously and directly in the extrusion process and eliminates the need for spinning oils. In order to prevent instabilities in the product, further modifications were also made to the process, such as a the moisture encapsulation of the melt extrusion line at certain points, which resulted in a bubble-free extrudate with high tensile strength, even in a melt extrusion line without built-in venting.
APA, Harvard, Vancouver, ISO, and other styles
36

Mechtcherine, Viktor, Albert Michel, Marco Liebscher, and Tobias Schmeier. "Extrusion-Based Additive Manufacturing with Carbon Reinforced Concrete: Concept and Feasibility Study." Materials 13, no. 11 (June 4, 2020): 2568. http://dx.doi.org/10.3390/ma13112568.

Full text
Abstract:
Additive manufacturing with cement-based materials needs sound approaches for the direct, seamless integration of reinforcement into structural and non-structural elements during their fabrication. Mineral-impregnated Carbon-Fibre (MCF) composites represent a new type of non-corrosive reinforcement that offers great potential in this regard. MCF not only exhibits high performance with respect to its mechanical characteristics and durability, but it also can be processed and shaped easily in the fresh state and, what is more, automated. This article describes different concepts for the continuous, fully automated integration of MCF reinforcement into 3D concrete printing based on layered extrusion. Moreover, for one of the approaches presented and discussed, namely 3D concrete printing with MCF supply from a continuous, stationary impregnation line and deposition of MCF between concrete filaments, a feasibility study was performed using a gantry 3D printer. Small-scale walls were printed and eventually used for the production of specimens for mechanical testing. Three-point bend tests performed on two different beam geometries showed a significant enhancement of both flexural strength and, more especially, deformability of the specimens reinforced with MCF in comparison to the specimens made of plain concrete.
APA, Harvard, Vancouver, ISO, and other styles
37

Galantucci, Luigi Maria, Alessandro Pellegrini, Maria Grazia Guerra, and Fulvio Lavecchia. "3D Printing of parts using metal extrusion: an overview of shaping debinding and sintering technology." Advanced Technologies & Materials 47, no. 1 (June 15, 2022): 25–32. http://dx.doi.org/10.24867/atm-2022-1-005.

Full text
Abstract:
Additive Manufacturing (AM) is the fabrication of real three-dimensional objects from plastics and metals by adding material, layer by layer. One of the most common AM processes is the Material Extrusion (ME) based on different approaches: plunger, filament and screw. Material Extrusion technologies of metal-polymer composites is expanding and it mainly uses the filament or plunger-based approaches. The feedstock used is a mixture of metal powder (from 55 vol% to about 80 vol%) dispersed in a thermoplastic matrix, as the Metal Injection Molding (MIM) materials. The process consists of three steps: shaping, debinding and sintering. The first step provides the extrusion of filament to realize a primary piece called “green part”; subsequent steps, debinding and sintering, allow to obtain a full metal part by dissolving the polymeric binder. The latter can be carried out using solvents, heat and the combination of them. The interest toward this technology is driven by the possibility to replace other Metal AM technologies, such as Selective Laser Melting or Direct Energy Deposition, in sectors like rapid-tooling or mass production, with several benefits: simplicity, safety to use and saving material and energy. The aim of this keynote is to provide a general overview of the main metal ME technologies considering the more technical aspects such as process methodologies, 3D printing strategy, process parameters, materials and possible applications for the manufacturing of samples on a 3D consumer printer.
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Jinyu, Shixiong Wu, Zedong Wang, Yuanfen Chen, and Hui You. "Experimental Investigation of High-Viscosity Conductive Pastes and the Optimization of 3D Printing Parameters." Applied Sciences 13, no. 4 (February 13, 2023): 2389. http://dx.doi.org/10.3390/app13042389.

Full text
Abstract:
Traditional contact printing technology is primarily controlled by the shape of the mask to form the size, while for the more popular non-contact printing technologies, in recent years, adjusting the print parameters has become a direct way to control the result of the printing. High-viscosity conductive pastes are generally processed by screen printing, but this method has limited accuracy and wastes material. Direct-write printing is a more material-efficient method, but the printing of high-viscosity pastes has extrusion difficulties, which affects the printed line width. In this paper, we addressed these problems by studying the method of printing high-viscosity conductive paste with a self-made glass nozzle. Then, by parameter optimization, we achieved the minimum line width printing. The results showed that the substrate moving speed, the print height, and the feed pressure were the key factors affecting the line width and stability. The combination of the printing parameters of 0.6 MPa feed pressure, 200 mm/s substrate moving speed, and 150 μm print height can achieve a line width of approximately 30 μm. In addition, a mathematical model of the line width and parameters was established, and the prediction accuracy was within 5%. The results and the prediction model of the parameters provide an important reference for the printing of high-viscosity pastes, which have immense potential applications in electronics manufacturing and bioprinting.
APA, Harvard, Vancouver, ISO, and other styles
39

Maiz-Fernández, Sheila, Leyre Pérez-Álvarez, Unai Silván, José Luis Vilas-Vilela, and Senentxu Lanceros-Méndez. "pH-Induced 3D Printable Chitosan Hydrogels for Soft Actuation." Polymers 14, no. 3 (February 8, 2022): 650. http://dx.doi.org/10.3390/polym14030650.

Full text
Abstract:
Three-dimensional (3D) printing represents a suitable technology for the development of biomimetic scaffolds for biomedical and tissue engineering applications. However, hydrogel-based inks’ printability remains a challenge due to their restricted print accuracy, mechanical properties, swelling or even cytotoxicity. Chitosan is a natural-derived polysaccharide that has arisen as a promising bioink due to its biodegradability, biocompatibility, sustainability and antibacterial properties, among others, as well as its ability to form hydrogels under the influence of a wide variety of mechanisms (thermal, ionic, pH, covalent, etc.). Its poor solubility at physiological pH, which has traditionally restricted its use, represents, on the contrary, the simplest way to induce chitosan gelation. Accordingly, herein a NaOH strong base was employed as gelling media for the direct 3D printing of chitosan structures. The obtained hydrogels were characterized in terms of morphology, chemical interactions, swelling and mechanical and rheological properties in order to evaluate the influence of the gelling solution’s ionic strength on the hydrogel characteristics. Further, the influence of printing parameters, such as extrusion speed (300, 600 and 800 mm/min) and pressure (20–35 kPa) and the cytocompatibility were also analyzed. In addition, printed gels show an electro-induced motion due to their polycationic nature, which highlights their potential as soft actuators and active scaffolds.
APA, Harvard, Vancouver, ISO, and other styles
40

Wang, Qianqian, Chencheng Ji, Lushan Sun, Jianzhong Sun, and Jun Liu. "Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing." Molecules 25, no. 10 (May 15, 2020): 2319. http://dx.doi.org/10.3390/molecules25102319.

Full text
Abstract:
As direct digital manufacturing, 3D printing (3DP) technology provides new development directions and opportunities for the high-value utilization of a wide range of biological materials. Cellulose nanofibrils (CNF) and polylactic acid (PLA) biocomposite filaments for fused deposition modeling (FDM) 3DP were developed in this study. Firstly, CNF was isolated by enzymatic hydrolysis combined with high-pressure homogenization. CNF/PLA filaments were then prepared by melt-extrusion of PLA as the matrix and CNF as the filler. Thermal stability, mechanical performance, and water absorption property of biocomposite filaments and 3D-printed objects were analyzed. Findings showed that CNF increased the thermal stability of the PLA/PEG600/CNF composite. Compared to unfilled PLA FDM filaments, the CNF filled PLA biocomposite filament showed an increase of 33% in tensile strength and 19% in elongation at break, suggesting better compatibility for desktop FDM 3DP. This study provided a new potential for the high-value utilization of CNF in 3DP in consumer product applications.
APA, Harvard, Vancouver, ISO, and other styles
41

Larraza, Izaskun, Julen Vadillo, Tamara Calvo-Correas, Alvaro Tejado, Loli Martin, Aitor Arbelaiz, and Arantxa Eceiza. "Effect of Cellulose Nanofibers’ Structure and Incorporation Route in Waterborne Polyurethane–Urea Based Nanocomposite Inks." Polymers 14, no. 21 (October 25, 2022): 4516. http://dx.doi.org/10.3390/polym14214516.

Full text
Abstract:
In order to continue the development of inks valid for cold extrusion 3D printing, waterborne, polyurethane–urea (WBPUU) based inks with cellulose nanofibers (CNF), as a rheological modulator, were prepared by two incorporation methods, ex situ and in situ, in which the CNF were added after and during the synthesis process, respectively. Moreover, in order to improve the affinity of the reinforcement with the matrix, modified CNF was also employed. In the ex situ preparation, interactions between CNFs and water prevail over interactions between CNFs and WBPUU nanoparticles, resulting in strong gel-like structures. On the other hand, in situ addition allows the proximity of WBPUU particles and CNF, favoring interactions between both components and allowing the formation of chemical bonds. The fewer amount of CNF/water interactions present in the in situ formulations translates into weaker gel-like structures, with poorer rheological behavior for inks for 3D printing. Stronger gel-like behavior translated into 3D-printed parts with higher precision. However, the direct interactions present between the cellulose and the polyurethane–urea molecules in the in situ preparations, and more so in materials reinforced with carboxylated CNF, result in stronger mechanical properties of the final 3D parts.
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Zhong, Xiao Gang Hu, Hong Xing Lu, and Qiang Zhu. "Microstructure Design of Semi-Solid Slurry for Metal Direct Writing." Solid State Phenomena 348 (August 28, 2023): 33–38. http://dx.doi.org/10.4028/p-qdk1x5.

Full text
Abstract:
Metal direct writing in semi-solid slurry is an innovative technology to realize low-cost printing of load-bearing parts in contrast to laser-based additive manufacturing. However, it is challenging to achieve near net-forming of 3D parts in the current stage because of the out of controlled microstructure and hence the unstable macro extrusion of the used semi-solid slurry. Here, mixed powder remelting (MPR) is introduced to actively design the characteristics of solid phases, i.e., solid fraction, shape factor, and size distribution. Specifically, high-melting-point pure Al powder served as the dispersed solid phases in the liquid phase that transformed from Al-Si alloy powder after remelting, leading to hypoeutectic Al-Si semi-solid slurry. The effectiveness of this approach was experimentally examined and kinetically modelled, to prepare semi-solid slurry with pre-set microstructure. The improved extrusion stability of semi-solid slurry can be anticipated, and it is universal for manufacturing of metal matrix composites slurry.
APA, Harvard, Vancouver, ISO, and other styles
43

Sánchez-Guirales, Sergio A., Noelia Jurado, Aytug Kara, Aikaterini Lalatsa, and Dolores R. Serrano. "Understanding Direct Powder Extrusion for Fabrication of 3D Printed Personalised Medicines: A Case Study for Nifedipine Minitablets." Pharmaceutics 13, no. 10 (September 29, 2021): 1583. http://dx.doi.org/10.3390/pharmaceutics13101583.

Full text
Abstract:
Fuse deposition modelling (FDM) has emerged as a novel technology for manufacturing 3D printed medicines. However, it is a two-step process requiring the fabrication of filaments using a hot melt extruder with suitable properties prior to printing taking place, which can be a rate-limiting step in its application into clinical practice. Direct powder extrusion can overcome the difficulties encountered with fabrication of pharmaceutical-quality filaments for FDM, allowing the manufacturing, in a single step, of 3D printed solid dosage forms. In this study, we demonstrate the manufacturing of small-weight (<100 mg) solid dosage forms with high drug loading (25%) that can be easily undertaken by healthcare professionals to treat hypertension. 3D printed nifedipine minitablets containing 20 mg were manufactured by direct powder extrusion combining 15% polyethylene glycol 4000 Da, 40% hydroxypropyl cellulose, 19% hydroxy propyl methyl cellulose acetate succinate, and 1% magnesium stearate. The fabricated 3D printed minitablets of small overall weight did not disintegrate during dissolution and allowed for controlled drug release over 24 h, based on erosion. This release profile of the printed minitablets is more suitable for hypertensive patients than immediate-release tablets that can lead to a marked burst effect, triggering hypotension. The small size of the minitablet allows it to fit inside of a 0-size capsule and be combined with other minitablets, of other API, for the treatment of complex diseases requiring polypharmacy within a single dosage form.
APA, Harvard, Vancouver, ISO, and other styles
44

Bednarzig, Vera, Stefan Schrüfer, Tom C. Schneider, Dirk W. Schubert, Rainer Detsch, and Aldo R. Boccaccini. "Improved 3D Printing and Cell Biology Characterization of Inorganic-Filler Containing Alginate-Based Composites for Bone Regeneration: Particle Shape and Effective Surface Area Are the Dominant Factors for Printing Performance." International Journal of Molecular Sciences 23, no. 9 (April 26, 2022): 4750. http://dx.doi.org/10.3390/ijms23094750.

Full text
Abstract:
The use of organic–inorganic 3D printed composites with enhanced properties in biomedical applications continues to increase. The present study focuses on the development of 3D printed alginate-based composites incorporating inorganic fillers with different shapes (angular and round), for bone regeneration. Reactive fillers (bioactive glass 13–93 and hydroxyapatite) and non-reactive fillers (inert soda–lime glass) were investigated. Rheological studies and the characterization of various extrusion-based parameters, including material throughput, printability, shape fidelity and filament fusion, were carried out to identify the parameters dominating the printing process. It was shown that the effective surface area of the filler particle has the highest impact on the printing behavior, while the filler reactivity presents a side aspect. Composites with angular particle morphologies showed the same high resolution during the printing process, almost independent from their reactivity, while composites with comparable amounts of round filler particles lacked stackability after printing. Further, it could be shown that a higher effective surface area of the particles can circumvent the need for a higher filler content for obtaining convincing printing results. In addition, it was proven that, by changing the particle shape, the critical filler content for the obtained adequate printability can be altered. Preliminary in vitro biocompatibility investigations were carried out with the bioactive glass containing ink. The 3D printed ink, forming an interconnected porous scaffold, was analyzed regarding its biocompatibility in direct or indirect contact with the pre-osteoblast cell line MC3T3-E1. Both kinds of cell tests showed increased viability and a high rate of proliferation, with complete coverage of the 3D scaffolds’ surface already after 7 d post cell-seeding.
APA, Harvard, Vancouver, ISO, and other styles
45

Bednarzig, Vera, Stefan Schrüfer, Tom C. Schneider, Dirk W. Schubert, Rainer Detsch, and Aldo R. Boccaccini. "Improved 3D Printing and Cell Biology Characterization of Inorganic-Filler Containing Alginate-Based Composites for Bone Regeneration: Particle Shape and Effective Surface Area Are the Dominant Factors for Printing Performance." International Journal of Molecular Sciences 23, no. 9 (April 26, 2022): 4750. http://dx.doi.org/10.3390/ijms23094750.

Full text
Abstract:
The use of organic–inorganic 3D printed composites with enhanced properties in biomedical applications continues to increase. The present study focuses on the development of 3D printed alginate-based composites incorporating inorganic fillers with different shapes (angular and round), for bone regeneration. Reactive fillers (bioactive glass 13–93 and hydroxyapatite) and non-reactive fillers (inert soda–lime glass) were investigated. Rheological studies and the characterization of various extrusion-based parameters, including material throughput, printability, shape fidelity and filament fusion, were carried out to identify the parameters dominating the printing process. It was shown that the effective surface area of the filler particle has the highest impact on the printing behavior, while the filler reactivity presents a side aspect. Composites with angular particle morphologies showed the same high resolution during the printing process, almost independent from their reactivity, while composites with comparable amounts of round filler particles lacked stackability after printing. Further, it could be shown that a higher effective surface area of the particles can circumvent the need for a higher filler content for obtaining convincing printing results. In addition, it was proven that, by changing the particle shape, the critical filler content for the obtained adequate printability can be altered. Preliminary in vitro biocompatibility investigations were carried out with the bioactive glass containing ink. The 3D printed ink, forming an interconnected porous scaffold, was analyzed regarding its biocompatibility in direct or indirect contact with the pre-osteoblast cell line MC3T3-E1. Both kinds of cell tests showed increased viability and a high rate of proliferation, with complete coverage of the 3D scaffolds’ surface already after 7 d post cell-seeding.
APA, Harvard, Vancouver, ISO, and other styles
46

Xiao, Bing, Xinmei Zheng, Yang Zhao, Bingxue Huang, Pan He, Biyou Peng, and Gang Chen. "Controlling Shear Rate for Designable Thermal Conductivity in Direct Ink Printing of Polydimethylsiloxane/Boron Nitride Composites." Polymers 15, no. 16 (August 21, 2023): 3489. http://dx.doi.org/10.3390/polym15163489.

Full text
Abstract:
Efficient heat dissipation is vital for advancing device integration and high-frequency performance. Three-dimensional printing, famous for its convenience and structural controllability, facilitates complex parts with high thermal conductivity. Despite this, few studies have considered the influence of shear rate on the thermal conductivity of printed parts. Herein, polydimethylsiloxane/boron nitride (PDMS/BN) composites were prepared and printed by direct ink writing (DIW). In order to ensure the smooth extrusion of the printing process and the structural stability of the part, a system with 40 wt% BN was selected according to the rheological properties. In addition, the effect of printing speed on the morphology of BN particles during 3D printing was studied by XRD, SEM observation, as well as ANSYS Polyflow simulation. The results demonstrated that increasing the printing speed from 10 mm/s to 120 mm/s altered the orientation angle of BN particles from 78.3° to 35.7°, promoting their alignment along the printing direction due to the high shear rate experienced. The resulting printed parts accordingly exhibited an impressive thermal conductivity of 0.849 W∙m−1∙K−1, higher than the 0.454 W∙m−1∙K−1 of the control sample. This study provides valuable insights and an important reference for future developments in the fabrication of thermal management devices with customizable thermal conductivity.
APA, Harvard, Vancouver, ISO, and other styles
47

Mea, Hing Jii, Luis Delgadillo, and Jiandi Wan. "On-demand modulation of 3D-printed elastomers using programmable droplet inclusions." Proceedings of the National Academy of Sciences 117, no. 26 (June 15, 2020): 14790–97. http://dx.doi.org/10.1073/pnas.1917289117.

Full text
Abstract:
One of the key thrusts in three-dimensional (3D) printing and direct writing is to seamlessly vary composition and functional properties in printed constructs. Most inks used for extrusion-based printing, however, are compositionally static and available approaches for dynamic tuning of ink composition remain few. Here, we present an approach to modulate extruded inks at the point of print, using droplet inclusions. Using a glass capillary microfluidic device as the printhead, we dispersed droplets in a polydimethylsiloxane (PDMS) continuous phase and subsequently 3D printed the resulting emulsion into a variety of structures. The mechanical characteristics of the 3D-printed constructs can be tuned in situ by varying the spatial distribution of droplets, including aqueous and liquid metal droplets. In particular, we report the use of poly(ethylene glycol) diacrylate (PEGDA) aqueous droplets for local PDMS chemistry alteration resulting in significant softening (85% reduced elastic modulus) of the 3D-printed constructs. Furthermore, we imparted magnetic functionality in PDMS by dispersing ferrofluid droplets and rationally designed and printed a rudimentary magnetically responsive soft robotic actuator as a functional demonstration of our droplet-based strategy. Our approach represents a continuing trend of adapting microfluidic technology and principles for developing the next generation of additive manufacturing technology.
APA, Harvard, Vancouver, ISO, and other styles
48

Andriotis, Eleftherios G., Georgios K. Eleftheriadis, Christina Karavasili, and Dimitrios G. Fatouros. "Development of Bio-Active Patches Based on Pectin for the Treatment of Ulcers and Wounds Using 3D-Bioprinting Technology." Pharmaceutics 12, no. 1 (January 9, 2020): 56. http://dx.doi.org/10.3390/pharmaceutics12010056.

Full text
Abstract:
Biodegradable 3D-printable inks based on pectin have been developed as a system for direct and indirect wound-dressing applications, suitable for 3D printing technologies. The 3D-printable inks formed free-standing transparent films upon drying, with the latter exhibiting fast disintegration upon contact with aqueous media. The antimicrobial and wound-healing activities of the inks have been successfully enhanced by the addition of particles, comprised of chitosan and cyclodextrin inclusion complexes with propolis extract. Response Surface Methodology (RSM) was applied for the optimization of the inks (extrusion-printing pressure, shrinkage minimization over-drying, increased water uptake and minimization of the disintegration of the dry patches upon contact with aqueous media). Particles comprised of chitosan and cyclodextrin/propolis extract inclusion complexes (CCP), bearing antimicrobial properties, were optimized and integrated with the produced inks. The bioprinted patches were assessed for their cytocompatibility, antimicrobial activity and in vitro wound-healing properties. These studies were complemented with ex vivo skin adhesion measurements, a relative surface hydrophobicity and opacity measurement, mechanical properties, visualization, and spectroscopic techniques. The in vitro wound-healing studies revealed that the 3D-bioprinted patches enhanced the in vitro wound-healing process, while the incorporation of CCP further enhanced wound-healing, as well as the antimicrobial activity of the patches.
APA, Harvard, Vancouver, ISO, and other styles
49

Kostenko, Anastassia, Che J. Connon, and Stephen Swioklo. "Storable Cell-Laden Alginate Based Bioinks for 3D Biofabrication." Bioengineering 10, no. 1 (December 23, 2022): 23. http://dx.doi.org/10.3390/bioengineering10010023.

Full text
Abstract:
Over the last decade, progress in three dimensional (3D) bioprinting has advanced considerably. The ability to fabricate complex 3D structures containing live cells for drug discovery and tissue engineering has huge potential. To realise successful clinical translation, biologistics need to be considered. Refinements in the storage and transportation process from sites of manufacture to the clinic will enhance the success of future clinical translation. One of the most important components for successful 3D printing is the ‘bioink’, the cell-laden biomaterial used to create the printed structure. Hydrogels are favoured bioinks used in extrusion-based bioprinting. Alginate, a natural biopolymer, has been widely used due to its biocompatibility, tunable properties, rapid gelation, low cost, and easy modification to direct cell behaviour. Alginate has previously demonstrated the ability to preserve cell viability and function during controlled room temperature (CRT) storage and shipment. The novelty of this research lies in the development of a simple and cost-effective hermetic system whereby alginate-encapsulated cells can be stored at CRT before being reformulated into an extrudable bioink for on-demand 3D bioprinting of cell-laden constructs. To our knowledge the use of the same biomaterial (alginate) for storage and on-demand 3D bio-printing of cells has not been previously investigated. A straightforward four-step process was used where crosslinked alginate containing human adipose-derived stem cells was stored at CRT before degelation and subsequent mixing with a second alginate. The printability of the resulting bioink, using an extrusion-based bioprinter, was found to be dependent upon the concentration of the second alginate, with 4 and 5% (w/v) being optimal. Following storage at 15 °C for one week, alginate-encapsulated human adipose-derived stem cells exhibited a high viable cell recovery of 88 ± 18%. Stored cells subsequently printed within 3D lattice constructs, exhibited excellent post-print viability and even distribution. This represents a simple, adaptable method by which room temperature storage and biofabrication can be integrated for on-demand bioprinting.
APA, Harvard, Vancouver, ISO, and other styles
50

Vidakis, Nectarios, Panagiotis Mangelis, Markos Petousis, Nikolaos Mountakis, Vassilis Papadakis, Amalia Moutsopoulou, and Dimitris Tsikritzis. "Mechanical Reinforcement of ABS with Optimized Nano Titanium Nitride Content for Material Extrusion 3D Printing." Nanomaterials 13, no. 4 (February 8, 2023): 669. http://dx.doi.org/10.3390/nano13040669.

Full text
Abstract:
Acrylonitrile Butadiene Styrene (ABS) nanocomposites were developed using Material Extrusion (MEX) Additive Manufacturing (AM) and Fused Filament Fabrication (FFF) methods. A range of mechanical tests was conducted on the produced 3D-printed structures to investigate the effect of Titanium Nitride (TiN) nanoparticles on the mechanical response of thermoplastic polymers. Detailed morphological characterization of the produced filaments and 3D-printed specimens was carried out using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). High-magnification images revealed a direct impact of the TiN concentration on the surface characteristics of the nanocomposites, indicating a strong correlation with their mechanical performance. The chemical compositions of the raw and nanocomposite materials were thoroughly investigated by conducting Raman and Energy Dispersive Spectroscopy (EDS) measurements. Most of the mechanical properties were improved with the inclusion of TiN nanoparticles with a content of 6 wt. % to reach the optimum mechanical response overall. ABS/TiN 6 wt. % exhibits remarkable increases in flexural modulus of elasticity (42.3%) and toughness (54.0%) in comparison with pure ABS. The development of ABS/TiN nanocomposites with reinforced mechanical properties is a successful example that validates the feasibility and powerful abilities of MEX 3D printing in AM.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography