Journal articles on the topic 'Direct-extrusion 3D-Printing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Direct-extrusion 3D-Printing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Romanczuk-Ruszuk, Eliza, Bogna Sztorch, Daria Pakuła, Ewa Gabriel, Krzysztof Nowak, and Robert E. Przekop. "3D Printing Ceramics—Materials for Direct Extrusion Process." Ceramics 6, no. 1 (February 1, 2023): 364–85. http://dx.doi.org/10.3390/ceramics6010022.
Full textLee, Su-Yeon, Chang-Soo Kim, Jean-Ho Park, Jong Beom Lee, Su-Hee Kim, Yun-Sung Han, and Hee-Sung Lee. "Study on the Direct Melting Extrusion Metal 3D Printing Using Induction Heating." Journal of the Korean Society of Manufacturing Technology Engineers 29, no. 1 (February 15, 2020): 66–73. http://dx.doi.org/10.7735/ksmte.2020.29.1.66.
Full textVatani, Morteza, and Jae-Won Choi. "Direct-print photopolymerization for 3D printing." Rapid Prototyping Journal 23, no. 2 (March 20, 2017): 337–43. http://dx.doi.org/10.1108/rpj-11-2015-0172.
Full textAzad, Mohammad A., Deborah Olawuni, Georgia Kimbell, Abu Zayed Md Badruddoza, Md Shahadat Hossain, and Tasnim Sultana. "Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective." Pharmaceutics 12, no. 2 (February 3, 2020): 124. http://dx.doi.org/10.3390/pharmaceutics12020124.
Full textLuis, Eric, Houwen Matthew Pan, Swee Leong Sing, Ram Bajpai, Juha Song, and Wai Yee Yeong. "3D Direct Printing of Silicone Meniscus Implant Using a Novel Heat-Cured Extrusion-Based Printer." Polymers 12, no. 5 (May 1, 2020): 1031. http://dx.doi.org/10.3390/polym12051031.
Full textPetsiuk, Aliaksei, Bharath Lavu, Rachel Dick, and Joshua M. Pearce. "Waste Plastic Direct Extrusion Hangprinter." Inventions 7, no. 3 (August 19, 2022): 70. http://dx.doi.org/10.3390/inventions7030070.
Full textKuźmińska, Magdalena, Beatriz C. Pereira, Rober Habashy, Matthew Peak, Mohammad Isreb, Tim D. Gough, Abdullah Isreb, and Mohamed A. Alhnan. "Solvent-free temperature-facilitated direct extrusion 3D printing for pharmaceuticals." International Journal of Pharmaceutics 598 (April 2021): 120305. http://dx.doi.org/10.1016/j.ijpharm.2021.120305.
Full textCersoli, Trenton, Alexis Cresanto, Callan Herberger, Eric MacDonald, and Pedro Cortes. "3D Printed Shape Memory Polymers Produced via Direct Pellet Extrusion." Micromachines 12, no. 1 (January 15, 2021): 87. http://dx.doi.org/10.3390/mi12010087.
Full textJain, Tanmay, William Clay, Yen-Ming Tseng, Apoorva Vishwakarma, Amal Narayanan, Deliris Ortiz, Qianhui Liu, and Abraham Joy. "Role of pendant side-chain length in determining polymer 3D printability." Polymer Chemistry 10, no. 40 (2019): 5543–54. http://dx.doi.org/10.1039/c9py00879a.
Full textRevilla-Leon, Marta, Marina Olea-Vielba, Ana Esteso-Díaz, Iñaki Martinez-Klemm, Jose Manuel Reuss Rodriguez-Vilaboa, and Mutlu Özcan. "New fabrication method using additive manufacturing technologies for the pattern of pressed lithium disilicate onlay restorations." Brazilian Dental Science 20, no. 4 (December 20, 2017): 149. http://dx.doi.org/10.14295/bds.2017.v20i4.1364.
Full textVan Damme, Lana, Emilie Briant, Phillip Blondeel, and Sandra Van Vlierberghe. "Indirect versus direct 3D printing of hydrogel scaffolds for adipose tissue regeneration." MRS Advances 5, no. 17 (2020): 855–64. http://dx.doi.org/10.1557/adv.2020.117.
Full textAlonso Madrid, Javier, Guillermo Sotorrío Ortega, Javier Gorostiza Carabaño, Nils O. E. Olsson, and José Antonio Tenorio Ríos. "3D Claying: 3D Printing and Recycling Clay." Crystals 13, no. 3 (February 22, 2023): 375. http://dx.doi.org/10.3390/cryst13030375.
Full textCrisostomo, Jan Lloyd Buenaventura, and John Ryan Cortez Dizon. "3D Printing Applications in Agriculture, Food Processing, and Environmental Protection and Monitoring." Advance Sustainable Science, Engineering and Technology 3, no. 2 (November 6, 2021): 0210201. http://dx.doi.org/10.26877/asset.v3i2.9627.
Full textPrzekop, Robert E., Ewa Gabriel, Daria Pakuła, and Bogna Sztorch. "Liquid for Fused Deposition Modeling Technique (L-FDM)—A Revolution in Application Chemicals to 3D Printing Technology: Color and Elements." Applied Sciences 13, no. 13 (June 21, 2023): 7393. http://dx.doi.org/10.3390/app13137393.
Full textAhammed, Syed Riyaz, and Ayyappan Susila Praveen. "Optimization parameters effects on electrical conductivity of 3D printed circuits fabricated by direct ink writing method using functionalized multiwalled carbon nanotubes and polyvinyl alcohol conductive ink." International Journal for Simulation and Multidisciplinary Design Optimization 12 (2021): 7. http://dx.doi.org/10.1051/smdo/2021007.
Full textLi, Keda, Jinghong Ding, Yuxiong Guo, Hongchao Wu, Wenwen Wang, Jiaqi Ji, Qi Pei, Chenliang Gong, Zhongying Ji, and Xiaolong Wang. "Direct Ink Writing of Phenylethynyl End-Capped Oligoimide/SiO2 to Additively Manufacture High-Performance Thermosetting Polyimide Composites." Polymers 14, no. 13 (June 30, 2022): 2669. http://dx.doi.org/10.3390/polym14132669.
Full textReddy Dumpa, Nagi, Suresh Bandari, and Michael A. Repka. "Novel Gastroretentive Floating Pulsatile Drug Delivery System Produced via Hot-Melt Extrusion and Fused Deposition Modeling 3D Printing." Pharmaceutics 12, no. 1 (January 8, 2020): 52. http://dx.doi.org/10.3390/pharmaceutics12010052.
Full textPark, Jung Bin, Seok Hwan An, Jae Woong Jung, and Jea Uk Lee. "Three-Dimensional Printing of Recycled Polypropylene and Activated Carbon Coatings for Harmful Gas Adsorption and Antibacterial Properties." Polymers 15, no. 5 (February 26, 2023): 1173. http://dx.doi.org/10.3390/polym15051173.
Full textKam, Doron, Michael Chasnitsky, Chen Nowogrodski, Ido Braslavsky, Tiffany Abitbol, Shlomo Magdassi, and Oded Shoseyov. "Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall." Colloids and Interfaces 3, no. 2 (April 19, 2019): 46. http://dx.doi.org/10.3390/colloids3020046.
Full textCho, Hui-Won, Seung-Hoon Baek, Beom-Jin Lee, and Hyo-Eon Jin. "Orodispersible Polymer Films with the Poorly Water-Soluble Drug, Olanzapine: Hot-Melt Pneumatic Extrusion for Single-Process 3D Printing." Pharmaceutics 12, no. 8 (July 22, 2020): 692. http://dx.doi.org/10.3390/pharmaceutics12080692.
Full textAmeeduzzafar, Nabil K. Alruwaili, Md Rizwanullah, Syed Nasir Abbas Bukhari, Mohd Amir, Muhammad Masood Ahmed, and Mohammad Fazil. "3D Printing Technology in Design of Pharmaceutical Products." Current Pharmaceutical Design 24, no. 42 (March 20, 2019): 5009–18. http://dx.doi.org/10.2174/1381612825666190116104620.
Full textJain, Tanmay, Yen-Ming Tseng, Chinnapatch Tantisuwanno, Joshua Menefee, Aida Shahrokhian, Irada Isayeva, and Abraham Joy. "Synthesis, Rheology, and Assessment of 3D Printability of Multifunctional Polyesters for Extrusion-Based Direct-Write 3D Printing." ACS Applied Polymer Materials 3, no. 12 (November 19, 2021): 6618–31. http://dx.doi.org/10.1021/acsapm.1c01275.
Full textKhondoker, Mohammad A. H., Adam Ostashek, and Dan Sameoto. "Direct 3D Printing of Stretchable Circuits via Liquid Metal Co‐Extrusion Within Thermoplastic Filaments." Advanced Engineering Materials 21, no. 7 (April 10, 2019): 1900060. http://dx.doi.org/10.1002/adem.201900060.
Full textRazzaq, Muhammad Yasar, Joamin Gonzalez-Gutierrez, Gregory Mertz, David Ruch, Daniel F. Schmidt, and Stephan Westermann. "4D Printing of Multicomponent Shape-Memory Polymer Formulations." Applied Sciences 12, no. 15 (August 5, 2022): 7880. http://dx.doi.org/10.3390/app12157880.
Full textKomorowski, Paweł, Mateusz Surma, Michał Walczakowski, Przemysław Zagrajek, and Agnieszka Siemion. "Off-Axis Diffractive Optics for Compact Terahertz Detection Setup." Applied Sciences 10, no. 23 (November 30, 2020): 8594. http://dx.doi.org/10.3390/app10238594.
Full textCiornei, Mirela, Răzvan Ionuț Iacobici, Ionel Dănuț Savu, and Dalia Simion. "FDM 3D Printing Process - Risks and Environmental Aspects." Key Engineering Materials 890 (June 23, 2021): 152–56. http://dx.doi.org/10.4028/www.scientific.net/kem.890.152.
Full textBoniatti, Janine, Patricija Januskaite, Laís B. da Fonseca, Alessandra L. Viçosa, Fábio C. Amendoeira, Catherine Tuleu, Abdul W. Basit, Alvaro Goyanes, and Maria-Inês Ré. "Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations." Pharmaceutics 13, no. 8 (July 21, 2021): 1114. http://dx.doi.org/10.3390/pharmaceutics13081114.
Full textSingamneni, Sarat, Malaya Prasad Behera, Derryn Truong, Marie Joo Le Guen, Elspeth Macrae, and Kim Pickering. "Direct extrusion 3D printing for a softer PLA-based bio-polymer composite in pellet form." Journal of Materials Research and Technology 15 (November 2021): 936–49. http://dx.doi.org/10.1016/j.jmrt.2021.08.044.
Full textGoyanes, Alvaro, Nour Allahham, Sarah J. Trenfield, Edmont Stoyanov, Simon Gaisford, and Abdul W. Basit. "Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process." International Journal of Pharmaceutics 567 (August 2019): 118471. http://dx.doi.org/10.1016/j.ijpharm.2019.118471.
Full textJain, Shubham, Mohammed Ahmad Yassin, Tiziana Fuoco, Hailong Liu, Samih Mohamed-Ahmed, Kamal Mustafa, and Anna Finne-Wistrand. "Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification." Journal of Tissue Engineering 11 (January 2020): 204173142095431. http://dx.doi.org/10.1177/2041731420954316.
Full textElbl, Jan, Martin Veselý, Dagmar Blaháčková, Jaroslav Ondruš, Pavel Kulich, Eliška Mašková, Josef Mašek, and Jan Gajdziok. "Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing." Pharmaceutics 15, no. 2 (February 20, 2023): 714. http://dx.doi.org/10.3390/pharmaceutics15020714.
Full textMenshutina, Natalia, Andrey Abramov, Maria Okisheva, and Pavel Tsygankov. "Investigation of the 3D Printing Process Utilizing a Heterophase System." Gels 9, no. 7 (July 12, 2023): 566. http://dx.doi.org/10.3390/gels9070566.
Full textWu, Ying, Chao An, and Yaru Guo. "3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications." Materials 16, no. 16 (August 18, 2023): 5681. http://dx.doi.org/10.3390/ma16165681.
Full textMaurel, Alexis, Ana Cristina Martinez, Sylvie Grugeon, Stephane Panier, Loic Dupont, Michel Armand, Roberto Russo, et al. "(Battery Division Postdoctoral Associate Research Award Sponsored by MTI Corporation and the Jiang Family Foundation) 3D Printing of Batteries: Fiction or Reality?" ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 214. http://dx.doi.org/10.1149/ma2022-023214mtgabs.
Full textRosenbaum, Christoph, Linus Großmann, Ellen Neumann, Petra Jungfleisch, Emre Türeli, and Werner Weitschies. "Development of a Hot-Melt-Extrusion-Based Spinning Process to Produce Pharmaceutical Fibers and Yarns." Pharmaceutics 14, no. 6 (June 10, 2022): 1229. http://dx.doi.org/10.3390/pharmaceutics14061229.
Full textMechtcherine, Viktor, Albert Michel, Marco Liebscher, and Tobias Schmeier. "Extrusion-Based Additive Manufacturing with Carbon Reinforced Concrete: Concept and Feasibility Study." Materials 13, no. 11 (June 4, 2020): 2568. http://dx.doi.org/10.3390/ma13112568.
Full textGalantucci, Luigi Maria, Alessandro Pellegrini, Maria Grazia Guerra, and Fulvio Lavecchia. "3D Printing of parts using metal extrusion: an overview of shaping debinding and sintering technology." Advanced Technologies & Materials 47, no. 1 (June 15, 2022): 25–32. http://dx.doi.org/10.24867/atm-2022-1-005.
Full textZhang, Jinyu, Shixiong Wu, Zedong Wang, Yuanfen Chen, and Hui You. "Experimental Investigation of High-Viscosity Conductive Pastes and the Optimization of 3D Printing Parameters." Applied Sciences 13, no. 4 (February 13, 2023): 2389. http://dx.doi.org/10.3390/app13042389.
Full textMaiz-Fernández, Sheila, Leyre Pérez-Álvarez, Unai Silván, José Luis Vilas-Vilela, and Senentxu Lanceros-Méndez. "pH-Induced 3D Printable Chitosan Hydrogels for Soft Actuation." Polymers 14, no. 3 (February 8, 2022): 650. http://dx.doi.org/10.3390/polym14030650.
Full textWang, Qianqian, Chencheng Ji, Lushan Sun, Jianzhong Sun, and Jun Liu. "Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing." Molecules 25, no. 10 (May 15, 2020): 2319. http://dx.doi.org/10.3390/molecules25102319.
Full textLarraza, Izaskun, Julen Vadillo, Tamara Calvo-Correas, Alvaro Tejado, Loli Martin, Aitor Arbelaiz, and Arantxa Eceiza. "Effect of Cellulose Nanofibers’ Structure and Incorporation Route in Waterborne Polyurethane–Urea Based Nanocomposite Inks." Polymers 14, no. 21 (October 25, 2022): 4516. http://dx.doi.org/10.3390/polym14214516.
Full textLi, Zhong, Xiao Gang Hu, Hong Xing Lu, and Qiang Zhu. "Microstructure Design of Semi-Solid Slurry for Metal Direct Writing." Solid State Phenomena 348 (August 28, 2023): 33–38. http://dx.doi.org/10.4028/p-qdk1x5.
Full textSánchez-Guirales, Sergio A., Noelia Jurado, Aytug Kara, Aikaterini Lalatsa, and Dolores R. Serrano. "Understanding Direct Powder Extrusion for Fabrication of 3D Printed Personalised Medicines: A Case Study for Nifedipine Minitablets." Pharmaceutics 13, no. 10 (September 29, 2021): 1583. http://dx.doi.org/10.3390/pharmaceutics13101583.
Full textBednarzig, Vera, Stefan Schrüfer, Tom C. Schneider, Dirk W. Schubert, Rainer Detsch, and Aldo R. Boccaccini. "Improved 3D Printing and Cell Biology Characterization of Inorganic-Filler Containing Alginate-Based Composites for Bone Regeneration: Particle Shape and Effective Surface Area Are the Dominant Factors for Printing Performance." International Journal of Molecular Sciences 23, no. 9 (April 26, 2022): 4750. http://dx.doi.org/10.3390/ijms23094750.
Full textBednarzig, Vera, Stefan Schrüfer, Tom C. Schneider, Dirk W. Schubert, Rainer Detsch, and Aldo R. Boccaccini. "Improved 3D Printing and Cell Biology Characterization of Inorganic-Filler Containing Alginate-Based Composites for Bone Regeneration: Particle Shape and Effective Surface Area Are the Dominant Factors for Printing Performance." International Journal of Molecular Sciences 23, no. 9 (April 26, 2022): 4750. http://dx.doi.org/10.3390/ijms23094750.
Full textXiao, Bing, Xinmei Zheng, Yang Zhao, Bingxue Huang, Pan He, Biyou Peng, and Gang Chen. "Controlling Shear Rate for Designable Thermal Conductivity in Direct Ink Printing of Polydimethylsiloxane/Boron Nitride Composites." Polymers 15, no. 16 (August 21, 2023): 3489. http://dx.doi.org/10.3390/polym15163489.
Full textMea, Hing Jii, Luis Delgadillo, and Jiandi Wan. "On-demand modulation of 3D-printed elastomers using programmable droplet inclusions." Proceedings of the National Academy of Sciences 117, no. 26 (June 15, 2020): 14790–97. http://dx.doi.org/10.1073/pnas.1917289117.
Full textAndriotis, Eleftherios G., Georgios K. Eleftheriadis, Christina Karavasili, and Dimitrios G. Fatouros. "Development of Bio-Active Patches Based on Pectin for the Treatment of Ulcers and Wounds Using 3D-Bioprinting Technology." Pharmaceutics 12, no. 1 (January 9, 2020): 56. http://dx.doi.org/10.3390/pharmaceutics12010056.
Full textKostenko, Anastassia, Che J. Connon, and Stephen Swioklo. "Storable Cell-Laden Alginate Based Bioinks for 3D Biofabrication." Bioengineering 10, no. 1 (December 23, 2022): 23. http://dx.doi.org/10.3390/bioengineering10010023.
Full textVidakis, Nectarios, Panagiotis Mangelis, Markos Petousis, Nikolaos Mountakis, Vassilis Papadakis, Amalia Moutsopoulou, and Dimitris Tsikritzis. "Mechanical Reinforcement of ABS with Optimized Nano Titanium Nitride Content for Material Extrusion 3D Printing." Nanomaterials 13, no. 4 (February 8, 2023): 669. http://dx.doi.org/10.3390/nano13040669.
Full text