Dissertations / Theses on the topic 'Direct current source'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 dissertations / theses for your research on the topic 'Direct current source.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Yushu. "Multilevel voltage source converters in high voltage direct current transmission systems." Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25814.
Full textCwikowski, Oliver. "Synthetic testing of high voltage direct current circuit breakers." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/synthetic-testing-of-high-voltage-direct-current-circuit-breakers(2f15e62f-8b2c-4e29-884e-323b90af2d11).html.
Full textSingh, Akanksha. "A boost current source inverter based generator-converter topology for direct drive wind turbines." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/34676.
Full textDepartment of Electrical and Computer Engineering
Behrooz Mirafzal
In this dissertation, a new topology for Direct-Drive Wind Turbines (DDWTs) with a new power electronics interface and a low-voltage generator design is presented. In the presented power electronics interface, the grid - side converter is replaced by a boost Current Source Inverter (CSI) which eliminates the required dc-bus capacitors resulting in an increase in the lifetime of DDWTs. The inherently required dc-link inductor for this topology is eliminated by utilizing the inductance of the Permanent Magnet Synchronous Generator (PMSG). The proposed three-phase boost CSI is equipped with Reverse-Blocking IGBTs (RB-IGBT) and the Phasor Pulse Width Modulation (PPWM) switching pattern to provide a 98% efficiency and high boost ratios ([superscript V]LL/V[subscript dc]) up to 3.5 in a single stage. In this dissertation, Phasor Pulse Width Modulation (PPWM) pattern for the boost – CSI is also modified and verified through simulation and experimental results. In order to realize potential capabilities of the boost inverter and to assist its penetration into renewable energy systems, the boost inverter dynamic behaviors are studied in this dissertation. Then, the developed models are verified using circuit simulations and experiments on a laboratory-scale boost – CSI equipped with RB-IGBTs. The developed dynamic models are used to study the stability of the boost – CSI through root locus of small signal poles (eigenvalues) as control inputs and load parameters vary within the boost inverter's operating limits. The dynamic models are also used to design the control schemes for the boost – CSI for both stand-alone and grid-tied modes of operation. The developed controllers of the boost – CSI are verified through simulation and experimental results. In this dissertation, the boost – CSI steady-state characterization equations are also developed and verified. The developed boost – CSI is used to replace the grid - side converter in a DDWT. A reliability analysis on the power electronics interface of an existing and developed topology is presented to demonstrate the increase in the mean time between failures. The boost – CSI enables conversion of a low dc voltage to a higher line-to-line voltage enabling the implementation of a low-voltage generator. This further enables a reduction in the number poles required in DDWT generators. The feasibility of the presented low-voltage generator is investigated through finite element computations. In this dissertation, a 1.5MW low-voltage generator designed for the proposed topology is compared with an existing 1.5MW permanent magnet synchronous generator for DDWTs to demonstrate the reduction in the volume, weight, and amount of permanent magnet materials required in the generator. The feasibility of the developed system is supported by a set of MATLAB/Simulink simulations and laboratory experiments on the closed-loop stand-alone and grid-tied systems.
Ridenour, Daniel Keith. "Examination of Power Systems Solutions Considering High Voltage Direct Current Transmission." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/63927.
Full textMaster of Science
Chen, Yijing. "Nonlinear Control and Stability Analysis of Multi-Terminal High Voltage Direct Current Networks." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112041/document.
Full textThis dissertation was devoted to the study of multi-terminal high voltage direct current (MTDC) networks. The main contributions were in the field of nonlinear automatic control, applied to power systems, power electronics and renewable energy sources. The research work was started with the intention of filling some gaps between the theory and the practice, in particular: 1) to investigate various control approaches for the purpose of improving the performance of MTDC systems; 2) to establish connections between existing empirical control design and theoretical analysis; 3) to improve the understanding of the multi-time-scale behavior of MTDC systems characterized by the presence of slow and fast transients in response to external disturbances. As a consequence, this thesis work can be put into three areas, namely nonlinear control design of MTDC systems, analysis of MTDC system's dynamic behaviors and application of MTDC systems for frequency control of AC systems
Giraneza, Martial. "High voltage direct current (HVDC) in applications for distributed independent power providers (IPP)." Thesis, Cape Peninsula University of Technology, 2013. http://hdl.handle.net/20.500.11838/1077.
Full textThe development of power electronics did remove most of technical limitations that high voltage direct current (HVDC) used to have. HVDC, now, is mostly used for the transmission of bulk power over long distances and for the interconnection of asynchronous grid. Along with the development of the HVDC, the growth of power demand also increased beyond the utilities capacities. Besides the on-going increasing of power demand, the reforms in electricity market have led to the liberalization and the incorporation of Independent power providers in power system operation. Regulations and rules have been established by regulating authority for grid integration of Independent power providers. With the expected increase of penetration level of those new independent power providers, result of economic reason and actual green energy trend, best method of integration of those new power plants are required. In this research HVDC technology, namely VSC-HVDC is used as interface for connecting independent power providers units to the grid. VSC-HVDC has various advantages such as short-circuit contribution and independent control of active and reactive power. VSC-HVDC advantages are used for a safe integration of IPPs and make them participate to grid stabilization. MATLAB/Simulink simulations of different grid connected, through VSC-HVDC system, IPPs technologies models are performed. For each IPP technology model, system model performances are studied and dynamics responses during the disturbance are analyzed in MATLAB/ Simulink program. The simulation results show that the model satisfy the standard imposed by the regulating authority in terms of power quality and grid support. Also the results show the effect of the VSC-HVDC in preventing faults propagation from grid to integrated IPPs units.
Krige, Ernst. "Harmonic interaction between weak AC systems and VSC-based HVDC schemes." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71704.
Full textENGLISH ABSTRACT: The implementation of the Caprivi Link Interconnector (CLI) High Voltage Direct Current (HVDC) scheme in 2010 connecting the weak Namibian and Zambian Alternating Current (AC) transmission networks via overhead line is based on Voltage Source Converter (VSC) technology. This world-first combination of attributes presents a unique opportunity to study harmonic interaction between weak AC systems and VSC-based HVDC schemes. Relatively few publications exist that focus on AC and DC harmonic interaction and very few refer to VSC HVDC schemes. Because weak AC systems are much more prone to harmonic distortion than strong AC systems, there is a clear motivation for more detailed work in this field. In order to understand the context wherein AC and DC harmonic interaction exists, the fields of AC power system harmonic analysis and resonance, VSC switching theory, HVDC scheme configurations, Pulse Width Modulation (PWM) techniques and frequency domain analysis techniques are discussed. This thesis then presents the concept of Harmonic Amplitude Transfer Ratio (HATR) by a theoretical analysis of AC and DC harmonic interaction due to the fundamental component, as well as harmonic interaction due to scheme characteristic harmonics and is compared to the simulation results obtained from different software solutions. Simulation and modelling techniques for AC and DC harmonic interaction are discussed including AC and DC systems modelling. The theoretical results and simulation results are compared to the results obtained from a real life case study on the CLI HVDC scheme where a harmonic resonance condition occurred. The correlation of these three sets of results confirms the validity of the theories presented and possible mitigation of the case study resonance problems is explored. The results and conclusion highlight a variety of interesting points on harmonic sequence components analysis, VSC zero sequence elimination, AC and DC harmonic interaction due to the fundamental component and the HATR for different PWM methods, AC and DC harmonic interaction due to scheme characteristic harmonics, modelling techniques and mitigation for the resonance conditions experienced in the analysed real life case study.
AFRIKAANSE OPSOMMING: Die implementering van die Caprivi Skakel Tussenverbinder (CLI) hoogspannings- gelykstroom (HSGS) skema in 2010 wat die swak Namibiese and Zambiese Wisselstroom (WS) transmissienetwerke verbind via „n oorhoofse lyn is gebasseer op Spanningsgevoerde-omsetter tegnologie. Hierdie wêreld-eerste kombinasie van eienskappe verskaf „n unieke geleentheid om harmoniese interaksie tussen swak WS stelsels en Spanningsgevoerde-omsetter Hoogspannings GS stelsels te bestudeer. Relatief min publikasies wat fokus op WS en GS harmoniese interaksie bestaan, en baie min verwys na Spanningsgevoerde-omsetter Hoogspannings GS skemas. Omdat swak WS stelsels baie meer geneig is tot harmoniese verwringing as sterk WS stelsels, is daar „n duidelike motivering vir meer gedetaileerde werk in hierdie veld. Om die konteks te verstaan waarin WS en GS harmoniese interaksie bestaan, word die velde van WS kragstelsel harmoniese analise en resonansie, Spanningsgevoerde-omsetter skakelteorie, Hoogspannings GS skema opstellings, Pulswydte Modulasie (PWM) tegnieke, en frekwensiegebied analiese tegnieke bespreek. Hierdie tesis stel dan die konsep van Harmoniese Amplitude Oordragsverhouding voor deur „n teoretiese analise van WS en GS harmoniese interaksie na aanleiding van die fundamentele komponent, asook harmoniese interaksie a.g.v. harmonieke wat die stelsel kenmerk en word vergelyk met die simulasieresultate verkry uit verskilllende sagteware oplossings. Simulasie- en modelleringstegnieke vir WS en GS harmoniese interaksie word bespreek insluitend WS- en GS stelselmodellering. Die teoretiese resultate en simulasieresultate word vergelyk met die resultate wat verkry is uit „n werklike gevallestudie op die CLI HSGS skema waar „n harmoniese resonansie toestand voorgekom het. Die ooreenkomste tussen hierdie drie stelle resultate bevestig die geldigheid van die teorieë soos uiteengeset voor, en die moontlike verbetering van die gevallestudie resonansie probleme word verken. Die resultate en samevatting beklemtoon „n verskeidenheid punte aangaande harmoniese volgorde-komponent analiese, Spanningsgevoerde-omsetter zero-volgorde uitskakeling, WS en GS harmoniese interaksie na aanleiding van die fundamentele komponent en die Harmoniese Amplitude Oordragsverhouding vir verskillende PWM metodes, WS en GS harmoniese interaksie na aanleiding van skema-kenmerkende harmonieke, modelleringstegnieke, asook verbetering van die resonansie toestande soos ervaar in die analise van die werklike gevallestudie.
Čedo, Žlebič. "Uticaj jednosmerne struje na karakteristike podešljivih feritnih komponenti." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2019. https://www.cris.uns.ac.rs/record.jsf?recordId=110180&source=NDLTD&language=en.
Full textAs part of this thesis variable ferite components with cores produced from comercialy available ESL 40011 ferite tapes manufactured in Low Temperature Co-fired Ceramic technology are implemented. Inductivity of the components is varied by applying DC current. Functionality of the implemented ferite components is verified in a circuit of DC-DC boost converter. This thesis proposes a measurement method which enables examining the influence of DC current on the characteristics of SMD inductors in real environment. The method is verified on comercialy available SMD inductors
Hadjikypris, Melios. "Supervisory control scheme for FACTS and HVDC based damping of inter-area power oscillations in hybrid AC-DC power systems." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/supervisory-control-scheme-for-facts-and-hvdc-based-damping-of-interarea-power-oscillations-in-hybrid-acdc-power-systems(cc03b44a-97f9-44ec-839f-5dcbcf2801f1).html.
Full textSastry, Jyoti. "Direct AC control of grid assets." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41109.
Full textRümmeli, M. H. "Fundamental properties of direct current and microwave glow discharge sources of relevance to analytical applications." Thesis, London Metropolitan University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321721.
Full textSchutte, Adriaan Nicholaas. "A bi-directional, direct conversion converter for use in household renewable energy systems." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1726.
Full textA bi-directional, direct conversion switch-mode converter is proposed for use in distributed household renewable energy systems. The converter is intended as the central interface between the household energy system’s low voltage Direct Current bus and the high voltage Alternating Current bus. The low voltage DC bus is connected to renewable generation and storage devices, while the high voltage AC bus is connected to the user’s equipment and the mains grid. The converter overcomes the inherent reverse-duty cycle problem associated with bi-directional converters by using a combination step-up / step-down half-bridge converter on the high voltage side of a high frequency transformer. The low voltage side of the transformer is driven by a full bridge inverter that acts as a rectifier during reverse mode. In order to control the flow of power in both directions the converter implements Average Current Mode Control. A method is developed to determine the transfer functions of common switch-mode converters by inspection alone. This method is applied to the proposed converter, and both current and voltage mode control loops are designed with the frequency response method. The control system is implemented using a Digital Signal Processor. A method of simultaneously simulating both the converter hardware and software is developed using VHDL. This method greatly reduced the development effort of the converter. The operation of the proposed converter is verified through this method of simulation. A prototype converter is constructed and successfully tested, thereby proving the viability of the proposed converter topology and control methodology.
Войтович, Юрій Сергійович. "Трифазні багатопульсні випрямлячі з електронним зсувом фаз." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41947.
Full textthesis is devoted to the solution of an important scientific problem - the creation of three-phase semiconductor converters of alternating current to constant current with improved energy and mass characteristics. The characteristics of existing types of three-phase rectifiers with electronic phase shift are analyzed and it is shown that a three-phase rectifier with electronic phase shift with a pulse frequency of more than 12 should contain a matching device for balancing the output voltage level. The use of low-frequency pulse-width modulation for balancing the output voltage of three-phase rectifier modules is proposed, which eliminates the use of autotransformers at the input of the converter. Electromagnetic processes in the converter based on multipulse rectifiers with electronic phase shift are analyzed and it is shown that for the considered class of converters it is advisable to use rectifiers with a pulse range from 18 to 24. The proposed circuit solutions of multi-pulse rectifiers with electronic phase shift can be used in the development and design of promising sources of direct current, requiring improved mass performance and compliance with the requirements for electromagnetic compatibility. For example: - In the development and design of promising sources of direct current electrified railways. - In the ground electrical equipment of airports, as an integral part of the ground supply complex 3x115 V 400 Hz 30-90 kW, etc.
Войтович, Юрій Сергійович. "Трифазні багатопульсні випрямлячі з електронним зсувом фаз." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41949.
Full textThesis for the degree of candidate of technical sciences in the specialty 05.09.12 "Semiconductor power converters" – National Technical University "Kharkiv Polytechnic Institute", Kharkov, 2019. The thesis is devoted to the solution of an important scientific problem - the creation of three-phase semiconductor converters of alternating current to constant current with improved energy and mass characteristics. In many electrical networks and systems, semiconductor transducers are one of the main types of load. Semiconductor transducers are nonlinear for the power supply, and its operation affects the network operating modes, especially if the power of the converter and the network are dimensional. Therefore, when designing both electrical networks and semiconductor converters, it is necessary to take into account the effect of converters on the power supply. In power electronics, one of the most common converters is a three-phase rectifier. Schemes of three-phase power rectifiers mainly used for power supply to consumers of medium and high power. Improvement of electromagnetic compatibility in these systems is possible using schemes of three-phase rectifiers with increased pulsativeness. The use of phase-shift transformers or autotransformers is necessary for such rectifiers. The use of phase-shift magnetic elements, worsens the mass characteristics of the converter, and when the rectifier pulsity increases, their design becomes more complicated. Improvement of mass characteristics and electromagnetic compatibility is possible with the use of electronic phase shift in three-phase rectifiers with increased pulsatility. In the dissertation work the structure of multipulse rectifiers with electron phase shift of pulses more than 12 is proposed, which allows to improve the harmonic composition of consumed current by increasing the rectifier pulsity, obtaining a high power factor by using the "lagging" and "outgoing" angles of control. The expediency of using fully controlled semiconductor keys with reverse blocking capability in three phase rectifiers with electron phase shift is substantiated. The use of low-frequency pulse-width modulation for balancing the output voltages of three-phase rectifier modules is proposed. The proposed circuitry solutions of multi-pulse rectifiers with electron phase shift can be used in the design of advanced DC sources requiring improved mass performance, compliance with electromagnetic compatibility requirements.
Platakis, Andrius. "Nuolatinės srovės keitiklio alternatyviems energijos šaltiniams kūrimas ir tyrimas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100702_090012-77157.
Full textThe work focuses on direct current (DC) converters for alternative energy sources. The data about the general production of electricity and the production of electricity from alternative energy sources in Lithuania and in the world is presented. In the first section the structures and topologies of DC-DC converters are analyzed, the signal formation algorithms and plots of the signals are given and discussed. In the second section the structures and topologies of DC-AC (Alternating Current) converters are analyzed, the signal formation algorithms and plots of the signals are presented. In the third section the output filter is analyzed. The topologies, characteristics, signal plots and equations are presented. In the fourth section the simulation and experimental investigation results are presented and discussed. The 1 kW DC-AC converter with output filter was designed for experimental investigation and a microcontroller-based microcomputer was used for generation of signals for control of converter output transistors. The obtained investigation results were employed for development of the converter for the solar panel. Conclusions in the each section of the thesis are given. General conclusions are formulated at the end of the work. Thesis consist of: 88 p. text without appendixes, 77 pictures, 9 tables, 28 bibliographical entries. Appendixes included.
Pedron, Solène. "Traiter les troubles psychiatriques à l'aide de la stimulation transcrânienne par courant continu : approches comportementale et neurobiologique chez la souris." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA3007/document.
Full textTranscranial direct current stimulation (tDCS) is a non-invasive neuromodulatory technique in which a low current is delivered via electrodes on the scalp to modulate cortical excitability. lt is a promising tool in the treatment of various neurological and psychiatrie illnesses, yet the mechanisms underlying its beneficial effects remain unknown. The goal of my thesis was to describe the effects of repeated tDCS on behavior in mice, and to offer preliminary insights regarding the neurobiological mechanisms involved. Our data indicate that repeated tDCS over the frontal lobe (0.2 mA, 2x20 min/day, 5 consecutive days) has antidepressant prope11ies and improves memory. Interestingly, tDCS increased precursor cell proliferation in the hippocampus, suggesting that tDCS may increase neurogenesis levels in this brain area. Lastly, tDCS decreased the behavioral and/or the molecular effects of nicotine, alcohol and cocaïne. For example, tDCS attenuated cocaine-induced Zif268 expression in specific corticostriatal circuits. Altogether, our findings provide pre-clinical evidence that tDCS cou Id be a beneficial adjunct treatment for several psychiatrie disorders. Our animal mode! will be useful to further investigate the mechanisms underlying the beneficial effects of tDCS on behavior
JanHenzgen and 邊文軒. "Stability Analysis of a Voltage-Source Converter-based Multi-Infeed High-Voltage Direct-Current Transmission System Connected to Offshore Wind Farms." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/5e8q93.
Full text國立成功大學
電機工程學系
105
This thesis presents the stability-analysis results of a system composed of two offshore wind farms (OWFs) connected to two onshore power grids through a multi-infeed high-voltage direct-current (MI-HVDC) system. The OWFs are based on doubly-fed induction generators (DFIGs), and the MI-HVDC system is based on voltage-source converters (VSCs). With the focus laid on the influence of the common tie line in the MI-HVDC system, small-signal stability and transient stability are analyzed by utilizing system eigenvalues and time-domain simulations, respectively. The simulation results show that a VSC-based MI-HVDC system can be more stable than two VSC-based HVDC links which operate independently from each other. In addition, the stability of the studied VSC-based MI-HVDC link can be significantly influenced by the electrical parameters of the common tie line.
Chen-YiFan and 范振毅. "Stability Analysis of Offshore Wind Farms Connected to Power Grids through Multi-Infeed High-Voltage Direct-Current Links based on Voltage-Source Converter." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/9xz6qj.
Full textΓιαννόπουλος, Σπυρίδων. "Έλεγχος τριφασικού ac/dc αντιστροφέα από την πλευρά του δικτύου για απευθείας στήριξη της αέργου ισχύος με τοπική παραγωγή αιολικού συστήματος." Thesis, 2014. http://hdl.handle.net/10889/8095.
Full textThe continuously increasing energy requirements of modern society combined with the rapid climate changes lead us to the need to produce electrical energy in a more economic and environmentally friendly way. Thus, the Renewable Energy Sources gain an increasing share of electrical energy production, constantly changing the global energy map. Wind power systems, which utilize the kinetic energy of the wind, are a kind of RES. In this thesis we study a wind power system, which comprises a variable speed wind turbine, which uses a permanent magnet synchronous machine, a voltage source converter, an R-L filter in the grid side and a short transmission line. The increased reliability and performance of PMSG make it particularly attractive solution for wind power systems. In this thesis we simulate in Matlab/Simulink environment the system described above. Applying appropriate control techniques on the machine side we try to achieve maximum power harvesting from the wind, while on the grid side we try through direct power flow control to achieve unit power factor with simultaneous control of the dc link voltage. Then, using an additional control we try to keep constant the voltage at the end of the R-L filter during a grid voltage drop. Finally, we present the simulation results along with a brief commentary and the conclusions.
Σακκάς, Σωτήρης. "Ανάλυση συστήματος μεταφοράς με διασύνδεση Σ.Ρ. και PWM ρυθμιζόμενους μετατροπείς." Thesis, 2012. http://hdl.handle.net/10889/5757.
Full textIn the past few years the method of power transmission by means of direct current has expanded rapidly. To this direction a push forward has been given by the development of new semi-conductive switching valves leading to a further development of transmission systems by direct current. In this thesis what is considered is a power transmission system via direct current HVDC connected between two AC electric networks with or without load. The direct current connection is achieved through back-to-back AC/DC converters VSC which undertake the role of rectifier and that of inverter of power. The converters use the Pulse Width Modulation (PWM). At first the converter model and the back-to-back HVDC system is theoretically approached and in the process what is designed and analyzed is its function between two networks of AC current with or without the simultaneous presence of load. Finally the system is simulated through software Matlab and specifically the application of simulink in order to draw conclusions.
Finke, Stefan. "Conventional and Reciprocal Approaches to the Forward and Inverse Problems of Electroencephalography." Thèse, 2012. http://hdl.handle.net/1866/8746.
Full textThe inverse problem of electroencephalography (EEG) is the localization of current sources within the brain using surface potentials on the scalp generated by these sources. An inverse solution typically involves multiple calculations of scalp surface potentials, i.e., the EEG forward problem. To solve the forward problem, models are needed for both the underlying source configuration, the source model, and the surrounding tissues, the head model. This thesis treats two distinct approaches for the resolution of the EEG forward and inverse problems using the boundary-element method (BEM): the conventional approach and the reciprocal approach. The conventional approach to the forward problem entails calculating the surface potentials starting from source current dipoles. The reciprocal approach, on the other hand, first solves for the electric field at the source dipole locations when the surface electrodes are reciprocally energized with a unit current. A scalar product of this electric field with the source dipoles then yields the surface potentials. The reciprocal approach promises a number of advantages over the conventional approach, including the possibility of increased surface potential accuracy and decreased computational requirements for inverse solutions. In this thesis, the BEM equations for the conventional and reciprocal approaches are developed using a common weighted-residual formulation. The numerical implementation of both approaches to the forward problem is described for a single-dipole source model. A three-concentric-spheres head model is used for which analytic solutions are available. Scalp potentials are calculated at either the centroids or the vertices of the BEM discretization elements used. The performance of the conventional and reciprocal approaches to the forward problem is evaluated for radial and tangential dipoles of varying eccentricities and two widely different skull conductivities. We then determine whether the potential advantages of the reciprocal approach suggested by forward problem simulations can be exploited to yield more accurate inverse solutions. Single-dipole inverse solutions are obtained using simplex minimization for both the conventional and reciprocal approaches, each with centroid and vertex options. Again, numerical simulations are performed on a three-concentric-spheres model for radial and tangential dipoles of varying eccentricities. The inverse solution accuracy of both approaches is compared for the two different skull conductivities and their relative sensitivity to skull conductivity errors and noise is assessed. While the conventional vertex approach yields the most accurate forward solutions for a presumably more realistic skull conductivity value, both conventional and reciprocal approaches exhibit large errors in scalp potentials for highly eccentric dipoles. The reciprocal approaches produce the least variation in forward solution accuracy for different skull conductivity values. In terms of single-dipole inverse solutions, conventional and reciprocal approaches demonstrate comparable accuracy. Localization errors are low even for highly eccentric dipoles that produce large errors in scalp potentials on account of the nonlinear nature of the single-dipole inverse solution. Both approaches are also found to be equally robust to skull conductivity errors in the presence of noise. Finally, a more realistic head model is obtained using magnetic resonance imaging (MRI) from which the scalp, skull, and brain/cerebrospinal fluid (CSF) surfaces are extracted. The two approaches are validated on this type of model using actual somatosensory evoked potentials (SEPs) recorded following median nerve stimulation in healthy subjects. The inverse solution accuracy of the conventional and reciprocal approaches and their variants, when compared to known anatomical landmarks on MRI, is again evaluated for the two different skull conductivities. Their respective advantages and disadvantages including computational requirements are also assessed. Once again, conventional and reciprocal approaches produce similarly small dipole position errors. Indeed, position errors for single-dipole inverse solutions are inherently robust to inaccuracies in forward solutions, but dependent on the overlapping activity of other neural sources. Against expectations, the reciprocal approaches do not improve dipole position accuracy when compared to the conventional approaches. However, significantly smaller time and storage requirements are the principal advantages of the reciprocal approaches. This type of localization is potentially useful in the planning of neurosurgical interventions, for example, in patients with refractory focal epilepsy in whom EEG and MRI are often already performed.