Journal articles on the topic 'Dirac nodal lines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Dirac nodal lines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fu, B. B., C. J. Yi, T. T. Zhang, M. Caputo, J. Z. Ma, X. Gao, B. Q. Lv, et al. "Dirac nodal surfaces and nodal lines in ZrSiS." Science Advances 5, no. 5 (May 2019): eaau6459. http://dx.doi.org/10.1126/sciadv.aau6459.
Full textShao, Yinming, Zhiyuan Sun, Ying Wang, Chenchao Xu, Raman Sankar, Alexander J. Breindel, Chao Cao, et al. "Optical signatures of Dirac nodal lines in NbAs2." Proceedings of the National Academy of Sciences 116, no. 4 (December 17, 2018): 1168–73. http://dx.doi.org/10.1073/pnas.1809631115.
Full textZhou, Biao, Shoji Ishibashi, Tatsuru Ishii, Takahiko Sekine, Ryosuke Takehara, Kazuya Miyagawa, Kazushi Kanoda, Eiji Nishibori, and Akiko Kobayashi. "Single-component molecular conductor [Pt(dmdt)2]—a three-dimensional ambient-pressure molecular Dirac electron system." Chemical Communications 55, no. 23 (2019): 3327–30. http://dx.doi.org/10.1039/c9cc00218a.
Full textZou, Z. C., P. Zhou, Z. S. Ma, and L. Z. Sun. "Strong anisotropic nodal lines in the TiBe family." Physical Chemistry Chemical Physics 21, no. 16 (2019): 8402–7. http://dx.doi.org/10.1039/c9cp00508k.
Full textZhang, Honghong, Yuee Xie, Zhongwei Zhang, Chengyong Zhong, Yafei Li, Zhongfang Chen, and Yuanping Chen. "Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet." Journal of Physical Chemistry Letters 8, no. 8 (April 3, 2017): 1707–13. http://dx.doi.org/10.1021/acs.jpclett.7b00452.
Full textAraki, Yasufumi, Jin Watanabe, and Kentaro Nomura. "Nodal Lines and Boundary Modes in Topological Dirac Semimetals with Magnetism." Journal of the Physical Society of Japan 90, no. 9 (September 15, 2021): 094702. http://dx.doi.org/10.7566/jpsj.90.094702.
Full textCheng, Zhengwang, Zhilong Hu, Shaojian Li, Xinguo Ma, Zhifeng Liu, Mei Wang, Jing He, et al. "Searching for a promising topological Dirac nodal-line semimetal by angle resolved photoemission spectroscopy." New Journal of Physics 23, no. 12 (December 1, 2021): 123026. http://dx.doi.org/10.1088/1367-2630/ac3d51.
Full textRosmus, Marcin, Natalia Olszowska, Zbigniew Bukowski, Paweł Starowicz, Przemysław Piekarz, and Andrzej Ptok. "Electronic Band Structure and Surface States in Dirac Semimetal LaAgSb2." Materials 15, no. 20 (October 14, 2022): 7168. http://dx.doi.org/10.3390/ma15207168.
Full textWu, Rongting, Ze‐Bin Wu, and Ivan Božović. "2D Mg‐Cu Intermetallic Compounds with Nontrivial Band Topology and Dirac Nodal Lines." Advanced Electronic Materials 8, no. 3 (December 23, 2021): 2100927. http://dx.doi.org/10.1002/aelm.202100927.
Full textSun, Yi, Licheng Wang, Xiaoyan Li, Xiaojing Yao, Xiaokang Xu, Tianxia Guo, Ailei He, Bing Wang, Yongjun Liu, and Xiuyun Zhang. "TM2B3 monolayers: Intrinsic anti-ferromagnetism and Dirac nodal line semimetal." Applied Physics Letters 121, no. 18 (October 31, 2022): 183103. http://dx.doi.org/10.1063/5.0113408.
Full textKato, Reizo, and Yoshikazu Suzumura. "A Tight-binding Model of an Ambient-pressure Molecular Dirac Electron System with Open Nodal Lines." Journal of the Physical Society of Japan 89, no. 4 (April 15, 2020): 044713. http://dx.doi.org/10.7566/jpsj.89.044713.
Full textPiéchon, Frédéric, and Yoshikazu Suzumura. "Inversion Symmetry and Wave-Function Nodal Lines of Dirac Electrons in Organic Conductor α-(BEDT-TTF)2I3." Journal of the Physical Society of Japan 82, no. 12 (December 15, 2013): 123703. http://dx.doi.org/10.7566/jpsj.82.123703.
Full textWang, Jianhua, Hongkuan Yuan, Ying Liu, Gang Zhang, and Xiaotian Wang. "Degenerate line modes in the surface and bulk phonon spectra of orthorhombic NaMgF3 perovskite." Applied Physics Letters 121, no. 19 (November 7, 2022): 192201. http://dx.doi.org/10.1063/5.0126759.
Full textPalumbo, Giandomenico. "Topological phase transitions with zero indirect band gaps." Journal of Physics: Condensed Matter 36, no. 26 (April 4, 2024): 26LT01. http://dx.doi.org/10.1088/1361-648x/ad3872.
Full textKeles, Ahmet, and Erhai Zhao. "Weyl nodes in periodic structures of superconductors and spin-active materials." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2125 (June 20, 2018): 20150151. http://dx.doi.org/10.1098/rsta.2015.0151.
Full textBhattacharyya, A., P. P. Ferreira, K. Panda, S. H. Masunaga, L. R. de Faria, L. E. Correa, F. B. Santos, et al. "Electron–phonon superconductivity in C-doped topological nodal-line semimetal Zr5Pt3: a muon spin rotation and relaxation (μSR) study." Journal of Physics: Condensed Matter 34, no. 3 (November 2, 2021): 035602. http://dx.doi.org/10.1088/1361-648x/ac2bc7.
Full textZhang, T. X., A. L. Coughlin, Chi-Ken Lu, J. J. Heremans, and S. X. Zhang. "Recent progress on topological semimetal IrO2: electronic structures, synthesis, and transport properties." Journal of Physics: Condensed Matter 36, no. 27 (April 10, 2024): 273001. http://dx.doi.org/10.1088/1361-648x/ad3603.
Full textZhang, Tiantian, T. Yilmaz, E. Vescovo, H. X. Li, R. G. Moore, H. N. Lee, H. Miao, S. Murakami, and M. A. McGuire. "Endless Dirac nodal lines in kagome-metal Ni3In2S2." npj Computational Materials 8, no. 1 (July 19, 2022). http://dx.doi.org/10.1038/s41524-022-00838-z.
Full textScheie, A., Pontus Laurell, P. A. McClarty, G. E. Granroth, M. B. Stone, R. Moessner, and S. E. Nagler. "Dirac Magnons, Nodal Lines, and Nodal Plane in Elemental Gadolinium." Physical Review Letters 128, no. 9 (March 2, 2022). http://dx.doi.org/10.1103/physrevlett.128.097201.
Full textSantos-Cottin, David, Michele Casula, Luca de' Medici, F. Le Mardelé, J. Wyzula, M. Orlita, Yannick Klein, Andrea Gauzzi, Ana Akrap, and R. P. S. M. Lobo. "Optical conductivity signatures of open Dirac nodal lines." Physical Review B 104, no. 20 (November 29, 2021). http://dx.doi.org/10.1103/physrevb.104.l201115.
Full textfernandez, hector, Rafael González-Hernández, Jose Paez, D. M. Hoat, Noboru Takeuchi Tan, Jonathan Guerrero-Sanchez, and Eduardo Pérez-Tijerina. "Two-dimensional antiferromagnetic nodal-line semimetal and spin Hall effect in MnC4." Journal of Physics: Condensed Matter, January 3, 2024. http://dx.doi.org/10.1088/1361-648x/ad1a7a.
Full textHao, Zhanyang, Yongqing Cai, Yixuan Liu, Yuan Wang, Xuelei Sui, Xiao-Ming Ma, Zecheng Shen, et al. "Dirac nodal lines and nodal loops in the topological kagome superconductor CsV3Sb5." Physical Review B 106, no. 8 (August 2, 2022). http://dx.doi.org/10.1103/physrevb.106.l081101.
Full textAn, Gijeong, Yoonseok Hwang, Yunjae Kim, Changmo Kang, Yoonah Chung, Minsu Kim, Seyeong Cha, et al. "Double Dirac nodal lines enforced by multiple nonsymmorphic symmetries." Physical Review B 109, no. 15 (April 16, 2024). http://dx.doi.org/10.1103/physrevb.109.155146.
Full textMin, Hong-Guk, Churlhi Lyi, Moon Jip Park, and Youngkuk Kim. "Hosohedral nodal-line superconductivity in hexagonal ABC Dirac semimetals." Communications Physics 7, no. 1 (January 5, 2024). http://dx.doi.org/10.1038/s42005-023-01501-9.
Full textFlores-Calderón, Rafael, Leonardo Medel Onofre, and Alberto Martin-Ruiz. "Electrochemical transport in Dirac nodal-line semimetals." Europhysics Letters, June 14, 2023. http://dx.doi.org/10.1209/0295-5075/acde5e.
Full textCameau, Mathis, Natalia Olszowska, Marcin Rosmus, Mathieu G. Silly, Tristan Cren, Axel Malécot, Pascal David, and Marie D'angelo. "Synthesis and characterisation of Cu2Ge, a new two-dimensional Dirac nodal line semimetal." 2D Materials, May 3, 2024. http://dx.doi.org/10.1088/2053-1583/ad471e.
Full textPark, Haedong, Wenlong Gao, Xiao Zhang, and Sang Soon Oh. "Nodal lines in momentum space: topological invariants and recent realizations in photonic and other systems." Nanophotonics, February 2, 2022. http://dx.doi.org/10.1515/nanoph-2021-0692.
Full textZyuzin, Alexander A., and Pascal Simon. "Disorder-induced exceptional points and nodal lines in Dirac superconductors." Physical Review B 99, no. 16 (April 29, 2019). http://dx.doi.org/10.1103/physrevb.99.165145.
Full textNelson, J. N., J. P. Ruf, Y. Lee, C. Zeledon, J. K. Kawasaki, S. Moser, C. Jozwiak, et al. "Dirac nodal lines protected against spin-orbit interaction in IrO2." Physical Review Materials 3, no. 6 (June 18, 2019). http://dx.doi.org/10.1103/physrevmaterials.3.064205.
Full textHu, Mengying, Ye Zhang, Xi Jiang, Tong Qiao, Qiang Wang, Shining Zhu, Meng Xiao, and Hui Liu. "Double-bowl state in photonic Dirac nodal line semimetal." Light: Science & Applications 10, no. 1 (August 20, 2021). http://dx.doi.org/10.1038/s41377-021-00614-6.
Full textChang, Yu, Xin Wang, Sanggyun Na, and Weiwei Zhang. "Computational Simulation of the Electronic State Transition in the Ternary Hexagonal Compound BaAgBi." Frontiers in Chemistry 9 (November 11, 2021). http://dx.doi.org/10.3389/fchem.2021.796323.
Full textLiu, Jian-Wei, Fu-Long Shi, Ke Shen, Xiao-Dong Chen, Ke Chen, Wen-Jie Chen, and Jian-Wen Dong. "Antichiral surface states in time-reversal-invariant photonic semimetals." Nature Communications 14, no. 1 (April 11, 2023). http://dx.doi.org/10.1038/s41467-023-37670-y.
Full textXie, Ying-Ming, Xue-Jian Gao, Xiao Yan Xu, Cheng-Ping Zhang, Jin-Xin Hu, Jason Z. Gao, and K. T. Law. "Kramers nodal line metals." Nature Communications 12, no. 1 (May 24, 2021). http://dx.doi.org/10.1038/s41467-021-22903-9.
Full textDamljanović, Vladimir. "Movable but unavoidable nodal lines through high-symmetry points in two-dimensional materials." Progress of Theoretical and Experimental Physics, April 14, 2023. http://dx.doi.org/10.1093/ptep/ptad050.
Full textMo, Shi-Cong, Xin-Yue Qiu, Guang-Ye Li, Feng Ning, Zile Wang, Fang Lin, and Shi-Zhang Chen. "Coexistence of Multiple Dirac Nodal Points and Nodal Lines in Two-dimensional Carbon Nanotube Arrays." Materials Today Communications, November 2023, 107590. http://dx.doi.org/10.1016/j.mtcomm.2023.107590.
Full textHe, Junwei, and Zhirong Liu. "Dirac cones in bipartite square–octagon lattice: A theoretical approach." Journal of Chemical Physics 159, no. 4 (July 28, 2023). http://dx.doi.org/10.1063/5.0160658.
Full textGao, Hongli, Weizhen Meng, Lirong Wang, and Jinxiang Deng. "Multiple-symmetry-protected lantern-like nodal walls in lithium-rich compound LiRuO2." Frontiers in Physics 10 (December 14, 2022). http://dx.doi.org/10.3389/fphy.2022.1081708.
Full textXiao, Shaozhu, Wen-He Jiao, Yu Lin, Qi Jiang, Xiufu Yang, Yunpeng He, Zhicheng Jiang, et al. "Dirac nodal lines in the quasi-one-dimensional ternary telluride TaPtTe5." Physical Review B 105, no. 19 (May 27, 2022). http://dx.doi.org/10.1103/physrevb.105.195145.
Full textHao, Zhanyang, Weizhao Chen, Yuan Wang, Jiayu Li, Xiao-Ming Ma, Yu-Jie Hao, Ruie Lu, et al. "Multiple Dirac nodal lines in an in-plane anisotropic semimetal TaNiTe5." Physical Review B 104, no. 11 (September 27, 2021). http://dx.doi.org/10.1103/physrevb.104.115158.
Full textCai, Yongqing, Jianfeng Wang, Yuan Wang, Zhanyang Hao, Yixuan Liu, Liang Zhou, Xuelei Sui, et al. "Type‐II Dirac Nodal Lines in a Double‐Kagome‐Layered Semimetal." Advanced Electronic Materials, April 28, 2023. http://dx.doi.org/10.1002/aelm.202300212.
Full textDamljanovic, Vladimir, and Nataša Lazić. "Electronic structures near unmovable nodal points and lines in two-dimensional materials." Journal of Physics A: Mathematical and Theoretical, April 21, 2023. http://dx.doi.org/10.1088/1751-8121/accf51.
Full textSun, Yan, Yang Zhang, Chao-Xing Liu, Claudia Felser, and Binghai Yan. "Dirac nodal lines and induced spin Hall effect in metallic rutile oxides." Physical Review B 95, no. 23 (June 2, 2017). http://dx.doi.org/10.1103/physrevb.95.235104.
Full textHirayama, Motoaki, Ryo Okugawa, Takashi Miyake, and Shuichi Murakami. "Topological Dirac nodal lines and surface charges in fcc alkaline earth metals." Nature Communications 8, no. 1 (January 11, 2017). http://dx.doi.org/10.1038/ncomms14022.
Full textFumega, Adolfo O., Victor Pardo, and A. Cortijo. "Increasing the number of topological nodal lines in semimetals via uniaxial pressure." Scientific Reports 11, no. 1 (May 19, 2021). http://dx.doi.org/10.1038/s41598-021-90165-y.
Full textSahoo, Biswajit, Alex Frano, and Eric E. Fullerton. "Efficient charge to spin conversion in iridium oxide thin films." Applied Physics Letters 123, no. 3 (July 17, 2023). http://dx.doi.org/10.1063/5.0153329.
Full textHerrera, Miguel A. J., and Dario Bercioux. "Tunable Dirac points in a two-dimensional non-symmorphic wallpaper group lattice." Communications Physics 6, no. 1 (March 8, 2023). http://dx.doi.org/10.1038/s42005-023-01156-6.
Full textJovic, Vedran, Roland J. Koch, Swarup K. Panda, Helmuth Berger, Philippe Bugnon, Arnaud Magrez, Kevin E. Smith, et al. "Dirac nodal lines and flat-band surface state in the functional oxide RuO2." Physical Review B 98, no. 24 (December 3, 2018). http://dx.doi.org/10.1103/physrevb.98.241101.
Full textYuan, Danwen, Changming Yue, Yuefang Hu, and Wei Zhang. "Nontrivial topological phases in ternary borides M2XB2 (M = W, Mo; X = Co, Ni)." Chinese Physics Letters, February 28, 2024. http://dx.doi.org/10.1088/0256-307x/41/3/037304.
Full textXiong, Zhongfei, Ruo-Yang Zhang, Rui Yu, C. T. Chan, and Yuntian Chen. "Hidden-symmetry-enforced nexus points of nodal lines in layer-stacked dielectric photonic crystals." Light: Science & Applications 9, no. 1 (October 19, 2020). http://dx.doi.org/10.1038/s41377-020-00382-9.
Full textHou, Wenjie, Jian Liu, Xi Zuo, Jian Xu, Xueying Zhang, Desheng Liu, Mingwen Zhao, Zhen-Gang Zhu, Hong-Gang Luo, and Weisheng Zhao. "Prediction of crossing nodal-lines and large intrinsic spin Hall conductivity in topological Dirac semimetal Ta3As family." npj Computational Materials 7, no. 1 (March 5, 2021). http://dx.doi.org/10.1038/s41524-021-00504-w.
Full text