Academic literature on the topic 'Dirac and Weyl fermions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dirac and Weyl fermions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dirac and Weyl fermions"
Ma, Tian-Chi, Jing-Nan Hu, Yuan Chen, Lei Shao, Xian-Ru Hu, and Jian-Bo Deng. "Coexistence of type-II and type-IV Dirac fermions in SrAgBi." Modern Physics Letters B 35, no. 11 (February 9, 2021): 2150181. http://dx.doi.org/10.1142/s0217984921501815.
Full textPal, Palash B. "Dirac, Majorana, and Weyl fermions." American Journal of Physics 79, no. 5 (May 2011): 485–98. http://dx.doi.org/10.1119/1.3549729.
Full textALONSO, J. L., J. L. CORTÉS, and E. RIVAS. "WEYL FERMION FUNCTIONAL INTEGRAL AND TWO-DIMENSIONAL GAUGE THEORIES." International Journal of Modern Physics A 05, no. 14 (July 20, 1990): 2839–51. http://dx.doi.org/10.1142/s0217751x90001331.
Full textHuang, Silu, Jisun Kim, W. A. Shelton, E. W. Plummer, and Rongying Jin. "Nontrivial Berry phase in magnetic BaMnSb2 semimetal." Proceedings of the National Academy of Sciences 114, no. 24 (May 24, 2017): 6256–61. http://dx.doi.org/10.1073/pnas.1706657114.
Full textBonora, Loriano, Roberto Soldati, and Stav Zalel. "Dirac, Majorana, Weyl in 4D." Universe 6, no. 8 (August 4, 2020): 111. http://dx.doi.org/10.3390/universe6080111.
Full textPandey, Mahul, and Sachindeo Vaidya. "Yang–Mills matrix mechanics and quantum phases." International Journal of Geometric Methods in Modern Physics 14, no. 08 (May 11, 2017): 1740009. http://dx.doi.org/10.1142/s0219887817400096.
Full textChen, Xiaomei, and Rui Zhu. "Quantum Pumping with Adiabatically Modulated Barriers in Three-Band Pseudospin-1 Dirac–Weyl Systems." Entropy 21, no. 2 (February 22, 2019): 209. http://dx.doi.org/10.3390/e21020209.
Full textHARADA, KOJI. "EQUIVALENCE BETWEEN THE WESS-ZUMINO-WITTEN MODEL AND TWO CHIRAL BOSONS." International Journal of Modern Physics A 06, no. 19 (August 10, 1991): 3399–418. http://dx.doi.org/10.1142/s0217751x91001659.
Full textReis, João Alfíeres Andrade de Simões dos, and Marco Schreck. "Formal Developments for Lorentz-Violating Dirac Fermions and Neutrinos." Symmetry 11, no. 10 (September 24, 2019): 1197. http://dx.doi.org/10.3390/sym11101197.
Full textGao, Lan-Lan, and Xu-Guang Huang. "Chiral Anomaly in Non-Relativistic Systems: Berry Curvature and Chiral Kinetic Theory." Chinese Physics Letters 39, no. 2 (February 1, 2022): 021101. http://dx.doi.org/10.1088/0256-307x/39/2/021101.
Full textDissertations / Theses on the topic "Dirac and Weyl fermions"
Krizman, Gauthier. "Étude magnéto-optique des transitions de phase topologique dans les alliages Pb₁₋ₓSnₓSe et leurs hétérostructures." Electronic Thesis or Diss., Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLE019.
Full textThis thesis deals with topological phases in Pb₁₋ₓSnₓSe alloys and their heterostructures. The topological and electronic properties of Pb₁₋ₓSnₓSe are characterized by using magneto-spectroscopy and numerous external and internal knobs like chemical composition, temperature, strain or magnetic field. The heterostructures are investigated to experimentally reach the topological interface states. A hybridization engineering of these topological interface states is demonstrated in both quantum wells and superlattices. The effect of a magnetic doping is also investigated. The great versatility of the Pb₁₋ₓSnₓSe-based system paves the way for the observation of numerous pseudo-relativistic phases such as quantum spin Hall effect, quantum anomalous Hall effect or Weyl fermions, …
Broccoli, Matteo. "On the trace anomaly of a Weyl fermion in a gauge background." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16408/.
Full textAmbrus, Victor E. "Dirac fermions on rotating space-times." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/7527/.
Full textFrenzel, Alex J. "Terahertz Electrodynamics of Dirac Fermions in Graphene." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467397.
Full textPhysics
Bhaseen, Miraculous Joseph. "Logarithmic conformal field theories of disordered Dirac fermions." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393358.
Full textKhalil, Lama. "Ultrafast study of Dirac fermions in topological insulators." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS344/document.
Full textThis thesis presents an experimental study of the electronic properties of two topological materials, namely, the irradiated three-dimensional topological insulator Bi₂Te₃ and the natural topological superlattice phase Sb₂Te. Both systems were investigated by techniques based on photoemission spectroscopy. The Bi₂Te₃ compounds have been irradiated by high-energy electron beams. Irradiation with electron beams is a very promising approach to realize materials that are really insulating in the bulk, in order to emphasize the quantum transport in the protected surface states. By studying a series of samples of Bi₂Te₃ using time- and angle-resolved photoemission spectroscopy (trARPES) we show that, while the topological properties of the Dirac surface states are preserved after electron irradiation, their ultrafast relaxation dynamics are very sensitive to the related modifications of the bulk properties. Furthermore, we have studied the occupied and unoccupied electronic band structure of Sb₂Te. Using scanning photoemission microscopy (SPEM), we have consistently found various nonequivalent regions on the same surface after cleaving several Sb₂Te single crystals. We were able to identify three distinct terminations characterized by different Sb/Te surface stoichiometric ratios and with clear differences in their band structure. For the dominating Te-rich termination, we also provided a direct observation of the excited electronic states and of their relaxation dynamics by means of trARPES. Our results clearly indicate that the surface electronic structure is strongly affected by the bulk properties of the superlattice. Therefore, for both systems, we show that the surface electronic structure is absolutely connected to the bulk properties
Bocquet, Marc. "Chaînes de Spins, Fermions de Dirac, et Systèmes Désordonnés." Phd thesis, Ecole Polytechnique X, 2000. http://tel.archives-ouvertes.fr/tel-00001560.
Full textSteiner, Margit Susanne. "Random Dirac fermions and localisation phenomena in one dimension." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325365.
Full textde, Coster George. "Effective Soft-Mode Theory of Strongly Interacting Fermions in Dirac Semimetals." Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24235.
Full text2020-01-11
Mizobata, William Nobuhiro. "Interação entre impurezas enterradas em um semimetal de Weyl : caso magnético /." Ilha Solteira, 2019. http://hdl.handle.net/11449/181343.
Full textResumo: Investigamos teoricamente um sistema composto por duas impurezas afastadas e enterradas em um semimetal de Weyl. Analisamos a densidade de estados local para duas situações: com simetrias de reversão temporal e inversão preservadas e; simetria de reversão temporal quebrada e inversão preservada. Na situação em que as duas simetrias são preservadas, o Hamiltoniano descreve um semimetal de Dirac. Sendo assim, verificamos a densidade de estados local em dois pontos diferentes do semimetal de Dirac e os orbitais moleculares formado pelas impurezas. É possível observar que em alguns pontos, a densidade de estados total, que pode ser obtido experimentalmente via espectroscopia de varredura por tunelamento, há a presença de apenas dois picos, enquanto que em outro ponto há a presença de quatro picos. Sendo assim, a presença de dois picos nos leva a crer que não há interação entre as impurezas, entretanto, em outro ponto que contém quatro picos em sua densidade de estados, mostra que há interação entre as impurezas. Analisamos os orbitais moleculares realizando uma topografa espacial da densidade de estados e é possível observar estados ligante e antiligante entre as impurezas com orbitais s. A segunda situação, com a quebra de simetria de reversão temporal e simetria de inversão preservada, temos um semimetal de Weyl com as bandas de energias separadas no espaço dos momentos e com energias degeneradas. Verificamos na densidade de estados local, uma magnetização das impurezas devido ... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: We investigate theoretically the setup composed by two distant impurities and burried in Weyl semimetal. We analyze a local density of states for two situations: with time reversal symmetry and inversion symmetry preserved and; time reversal symmetry broken and inversion symmetry preserved. In the situation that the two symmetries are preserved, the Hamiltonian describes a Dirac semimetal. Therefore, we verified the local density of states in two different points of Dirac semimetal and the molecular orbital formed by the impurities. It is possible to observe that in some points, the total density of states, which can be obtained experimentally via scanning tunneling microscope, there is the presence of just two peaks, while that in another point there is the presence of four peaks. Therefore, the presence of two peaks leads us to belive that there is no interaction between impurities, however, in the another point that contain four peaks in the density of states, show that there is interaction between the impurities. We analyze the molecular orbital realizing a spacial topography of density of states and it is possible to observe bonding and antibonding states between impurities with s orbital. The second situation, with the time reversal symmetry broken and inversion symmetry preserved, we have a Weyl semimetal with separated energy bands in momentum space and degenerate energy. We verified in the local density of states, a magnetization of the impurities due to the time rev... (Complete abstract click electronic access below)
Mestre
Books on the topic "Dirac and Weyl fermions"
Israelit, Mark. The Weyl-Dirac theory and our universe. Commack, N.Y: Nova Science Publishers, 1999.
Find full textKachelriess, Michael. Fermions and the Dirac equation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0008.
Full textElectronic Properties of Dirac and Weyl Semimetals. World Scientific Publishing Co Pte Ltd, 2021.
Find full textWurm, Jurgen. Dirac Fermions in Graphene Nanostructures: Edge Effects on Spectral Density and Quantum Transport. Universitatsverlag Regensburg, 2011.
Find full textBaulieu, Laurent, John Iliopoulos, and Roland Sénéor. Towards a Relativistic Quantum Mechanics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0007.
Full textZirnbauer, Martin R. Symmetry classes. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.3.
Full textKübler, Jürgen. Theory of Itinerant Electron Magnetism, 2nd Edition. 2nd ed. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895639.001.0001.
Full textBook chapters on the topic "Dirac and Weyl fermions"
Pronin, Artem V. "Dirac and Weyl Semimetals." In Springer Series in Solid-State Sciences, 45–81. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35637-7_3.
Full textShen, Shun-Qing. "Topological Dirac and Weyl Semimetals." In Springer Series in Solid-State Sciences, 207–29. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4606-3_11.
Full textWolschin, Georg. "Dirac-Neutrinos: Die Weyl-Gleichung." In Relativistische Quantenmechanik, 101–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-64387-7_8.
Full textWolschin, Georg. "Dirac-Neutrinos: Die Weyl-Gleichung." In Relativistische Quantenmechanik, 97–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47108-1_8.
Full textKobayashi, Takayoshi. "Dirac Fermions Near the Dirac Point in Topological Insulators." In Ultrashort Pulse Lasers and Ultrafast Phenomena, 487–94. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429196577-69.
Full textJohnson, P. D. "Dirac cones and topological states: Dirac and Weyl semimetals." In Physics of Solid Surfaces, 535–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_128.
Full textBhaseen, M. J., J. S. Caux, I. I. Kogan, and A. M. Tsvelik. "Disordered Dirac Fermions: Three Different Approaches." In New Theoretical Approaches to Strongly Correlated Systems, 173–203. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0838-9_8.
Full textLitvinov, Vladimir. "Indirect Exchange Interaction Mediated by Dirac Fermions." In Magnetism in Topological Insulators, 117–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12053-5_7.
Full textSerban, Didina. "2D Random Dirac Fermions: Large N Approach." In Statistical Field Theories, 263–75. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0514-2_24.
Full textIsobe, Hiroki. "Interacting Dirac Fermions in (3+1) Dimensions." In Theoretical Study on Correlation Effects in Topological Matter, 33–62. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3743-6_2.
Full textConference papers on the topic "Dirac and Weyl fermions"
Buividovich, P. V. "Surface states of massive Dirac fermions with separated Weyl nodes." In XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4938609.
Full textBelyanin, Alexey. "Magnetooptics of materials with Dirac and Weyl fermions (Conference Presentation)." In Spintronics XV, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2022. http://dx.doi.org/10.1117/12.2634322.
Full textKumar, Upendra, Vipin Kumar, Enamullah, and Girish S. Setlur. "Bloch-Siegert shift in Dirac-Weyl fermionic systems." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029045.
Full textMatos, Tonatiuh, Omar Gallegos, and Pierre-Henri Chavanis. "Hydrodynamic representation and energy balance for the Dirac and Weyl fermions in curved space-times." In Proceedings of the MG16 Meeting on General Relativity. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811269776_0201.
Full textNagaosa, Naoto. "Correlated Weyl Fermions in Oxides." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019). Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.30.011007.
Full textAkrap, Ana. "Magneto-optics of Dirac and Weyl semimetals." In Terahertz Emitters, Receivers, and Applications XI, edited by Manijeh Razeghi and Alexei N. Baranov. SPIE, 2020. http://dx.doi.org/10.1117/12.2569451.
Full textLeClair, Andre. "Renormalization Group for disordered Dirac Fermions." In Workshop on Integrable Theories, Solitons and Duality. Trieste, Italy: Sissa Medialab, 2002. http://dx.doi.org/10.22323/1.008.0022.
Full textOng, N. Phuan. "The Chiral Anomaly in Dirac and Weyl Semimetals." In Nobel Symposium 167: Chiral Matter. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811265068_0008.
Full textLuo, C. W., H. J. Wang, S. A. Ku, H. J. Chen, T. T. Yeh, J. Y. Lin, K. H. Wu, et al. "Snapshots of Dirac Fermions near the Dirac Point in Topological Insulators." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/up.2014.08.tue.p2.31.
Full textCatterall, Simon. "Dirac-Kahler fermions and exact lattice supersymmetry." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0006.
Full textReports on the topic "Dirac and Weyl fermions"
Huang, Lunan. Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1342554.
Full textHorng, Jason, Chi-Fan Chen, Baisong Geng, Caglar Girit, Yuanbo Zhang, Zhao Hao, Hans A. Bechtel, Michael Martin, Alex Zettl, and Michael F. Crommie. Drude Conductivity of Dirac Fermions in Graphene. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada526672.
Full textVekhter, Ilya. Inhomogeneous disorder Dirac Fermions: from heavy fermion superconductors to graphene. Final report. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1089679.
Full textMishchenko, Eugene. Disorder, interactions, and their interplay in novel narrow-gap Dirac materials and Weyl semimetals. Office of Scientific and Technical Information (OSTI), March 2022. http://dx.doi.org/10.2172/1856847.
Full text