Journal articles on the topic 'Dioxazolone'

To see the other types of publications on this topic, follow the link: Dioxazolone.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Dioxazolone.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Borah, Gongutri, Preetismita Borah, and Pitambar Patel. "Cp*Co(iii)-catalyzed ortho-amidation of azobenzenes with dioxazolones." Organic & Biomolecular Chemistry 15, no. 18 (2017): 3854–59. http://dx.doi.org/10.1039/c7ob00540g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Lei, Xiangyun Zheng, Jinkang Chen, Kang Cheng, Licheng Jin, Xinpeng Jiang, and Chuanming Yu. "Ru(ii)-Catalyzed C6-selective C–H amidation of 2-pyridones." Organic Chemistry Frontiers 5, no. 20 (2018): 2969–73. http://dx.doi.org/10.1039/c8qo00795k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pan, Deng, Gen Luo, Yang Yu, Jimin Yang, and Yi Luo. "Computational insights into Ir(iii)-catalyzed allylic C–H amination of terminal alkenes: mechanism, regioselectivity, and catalytic activity." RSC Advances 11, no. 31 (2021): 19113–20. http://dx.doi.org/10.1039/d1ra03842g.

Full text
Abstract:
DFT studies on Ir(iii)-catalyzed branch-selective allylic C–H amination of terminal olefins with methyl dioxazolone have been carried out to investigate the mechanism, including the origins of regioselectivity and catalytic activity difference.
APA, Harvard, Vancouver, ISO, and other styles
4

Hall, David S., Toren Hynes, and J. R. Dahn. "Dioxazolone and Nitrile Sulfite Electrolyte Additives for Lithium-Ion Cells." Journal of The Electrochemical Society 165, no. 13 (2018): A2961—A2967. http://dx.doi.org/10.1149/2.0341813jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gauthier, Roby, David S. Hall, Katherine Lin, Jazmin Baltazar, Toren Hynes, and J. R. Dahn. "Impact of Functionalization and Co-Additives on Dioxazolone Electrolyte Additives." Journal of The Electrochemical Society 167, no. 8 (May 26, 2020): 080540. http://dx.doi.org/10.1149/1945-7111/ab8ed6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ghosh, Payel, Sadhanendu Samanta, and Alakananda Hajra. "Rhodium(iii)-catalyzed ortho-C–H amidation of 2-arylindazoles with a dioxazolone as an amidating reagent." Organic & Biomolecular Chemistry 18, no. 9 (2020): 1728–32. http://dx.doi.org/10.1039/c9ob02756d.

Full text
Abstract:
A simple and efficient method for directed amidation of a wide range of 2-arylindazoles has been established for the first time through a rhodium-catalyzed C–H activation reaction with alkyl, aryl and heteroaryl dioxazolones.
APA, Harvard, Vancouver, ISO, and other styles
7

Hande, Akshay Ekanath, Nachimuthu Muniraj, and Kandikere Ramaiah Prabhu. "Cobalt(III)-Catalyzed C-H Amidation of Azobenzene Derivatives Using Dioxazolone as an Amidating Reagent." ChemistrySelect 2, no. 21 (July 21, 2017): 5965–69. http://dx.doi.org/10.1002/slct.201701277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hande, Akshay Ekanath, and Kandikere Ramaiah Prabhu. "Ru(II)-Catalyzed C–H Amidation of Indoline at the C7-Position Using Dioxazolone as an Amidating Agent: Synthesis of 7-Amino Indoline Scaffold." Journal of Organic Chemistry 82, no. 24 (November 28, 2017): 13405–13. http://dx.doi.org/10.1021/acs.joc.7b02500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Chen-Fei, Man Liu, Jun-Shu Sun, Chao Li, and Lin Dong. "Synthesis of 2-aminobenzaldehydes by rhodium(iii)-catalyzed C–H amidation of aldehydes with dioxazolones." Organic Chemistry Frontiers 5, no. 13 (2018): 2115–19. http://dx.doi.org/10.1039/c8qo00413g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tang, Shi-Biao, Xiao-Pan Fu, Gao-Rong Wu, Li-Li Zhang, Ke-Zuan Deng, Jin-Yue Yang, Cheng-Cai Xia, and Ya-Fei Ji. "Rhodium(iii)-catalyzed C4-amidation of indole-oximes with dioxazolones via C–H activation." Organic & Biomolecular Chemistry 18, no. 39 (2020): 7922–31. http://dx.doi.org/10.1039/d0ob01655a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Saxena, Paridhi, Neha Maida, and Manmohan Kapur. "Dioxazolones as masked ester surrogates in the Pd(ii)-catalyzed direct C–H arylation of 6,5-fused heterocycles." Chemical Communications 55, no. 75 (2019): 11187–90. http://dx.doi.org/10.1039/c9cc05563k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wang, Jinlei, Guangfan Zheng, and Xingwei Li. "Rhodium(iii)-catalyzed diamidation of olefins via amidorhodation and further amidation." Chemical Communications 56, no. 56 (2020): 7809–12. http://dx.doi.org/10.1039/d0cc00952k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Yuan, Fang Xie, Ai-Qun Jia, and Xingwei Li. "Cp*Co(iii)-catalyzed amidation of olefinic and aryl C–H bonds: highly selective synthesis of enamides and pyrimidones." Chemical Communications 54, no. 34 (2018): 4345–48. http://dx.doi.org/10.1039/c8cc01447g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Song, Dan, Changfeng Huang, Peishi Liang, Baofu Zhu, Xiang Liu, and Hua Cao. "Lewis acid-catalyzed regioselective C–H carboxamidation of indolizines with dioxazolones via an acyl nitrene type rearrangement." Organic Chemistry Frontiers 8, no. 11 (2021): 2583–88. http://dx.doi.org/10.1039/d1qo00224d.

Full text
Abstract:
An efficient, direct, and novel Lewis acid-catalyzed regioselective C–H carboxamidation of indolizines with dioxazolones via an acyl nitrene type rearrangement under metal-free conditions has been documented.
APA, Harvard, Vancouver, ISO, and other styles
15

Tobisch, Sven. "Copper hydride-mediated electrophilic amidation of vinylarenes with dioxazolones – a computational mechanistic study." Dalton Transactions 48, no. 38 (2019): 14337–46. http://dx.doi.org/10.1039/c9dt02540e.

Full text
Abstract:
An in-depth computational mechanistic probe of the CuH-mediated formal hydroamidation of vinylarenes with dioxazolones allowed the substitution of mechanistic hypothesis advanced previously by a computationally verified mechanistic view.
APA, Harvard, Vancouver, ISO, and other styles
16

Ding, Jun, Wei Jiang, He-Yuan Bai, Tong-Mei Ding, Dafang Gao, Xiaoguang Bao, and Shu-Yu Zhang. "Experimental and computational studies on H2O-promoted, Rh-catalyzed transient-ligand-free ortho-C(sp2)–H amidation of benzaldehydes with dioxazolones." Chemical Communications 54, no. 64 (2018): 8889–92. http://dx.doi.org/10.1039/c8cc04904a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bae, Hyeonwoong, Jinhwan Park, Rahyun Yoon, Seunghoon Lee, and Jongwoo Son. "Copper-catalyzed synthesis of primary amides through reductive N–O cleavage of dioxazolones." RSC Advances 14, no. 14 (2024): 9440–44. http://dx.doi.org/10.1039/d4ra00320a.

Full text
Abstract:
Reaction of dioxazolones in the presence of a copper catalyst and a silane is represented. Mild reductive reaction conditions for the N–O bond cleavage and large-scale protocols are also highlighted with excellent tolerance in the presence of water.
APA, Harvard, Vancouver, ISO, and other styles
18

Yetra, Santhivardhana Reddy, Zhigao Shen, Hui Wang, and Lutz Ackermann. "Thiocarbonyl-enabled ferrocene C–H nitrogenation by cobalt(III) catalysis: thermal and mechanochemical." Beilstein Journal of Organic Chemistry 14 (June 25, 2018): 1546–53. http://dx.doi.org/10.3762/bjoc.14.131.

Full text
Abstract:
Versatile C–H amidations of synthetically useful ferrocenes were accomplished by weakly-coordinating thiocarbonyl-assisted cobalt catalysis. Thus, carboxylates enabled ferrocene C–H nitrogenations with dioxazolones, featuring ample substrate scope and robust functional group tolerance. Mechanistic studies provided strong support for a facile organometallic C–H activation manifold.
APA, Harvard, Vancouver, ISO, and other styles
19

Bondock, Samir, Ehab Abdel Latif, and Johann Lex. "Solvent-free Photooxygenation of 5-methoxyoxazoles: Stereoselective Synthesis of α-amino-α-hydroxy Carboxylic Acid Derivatives." Journal of Chemical Research 2005, no. 7 (July 2005): 422–26. http://dx.doi.org/10.3184/030823405774309168.

Full text
Abstract:
A solvent-free photooxygenation of 5-methoxyoxazoles 1a–j embedded in porphrin-loaded polystyrene beads as solid support is described and applied for the synthesis of 3H-1,2,4-dioxazole derivatives 2a–j. Acid catalysed hydrolysis of 3H-1,2,4-dioxazole derivatives gave α-amino-α-hydroxy carboxylic acid derivatives 3a–j. The structural elucidation of the new compounds were carried on the basis of spectral and X-ray analyses.
APA, Harvard, Vancouver, ISO, and other styles
20

Pan, Jie, Haocong Li, Kai Sun, Shi Tang, and Bing Yu. "Visible-Light-Induced Decarboxylation of Dioxazolones to Phosphinimidic Amides and Ureas." Molecules 27, no. 12 (June 7, 2022): 3648. http://dx.doi.org/10.3390/molecules27123648.

Full text
Abstract:
A visible-light-induced external catalyst-free decarboxylation of dioxazolones was realized for the bond formation of N=P and N–C bonds to access phosphinimidic amides and ureas. Various phosphinimidic amides and ureas (47 examples) were synthesized with high yields (up to 98%) by this practical strategy in the presence of the system’s ppm Fe.
APA, Harvard, Vancouver, ISO, and other styles
21

Colbeaux, Aimeline, Françoise Fenouillot, Jean-François Gerard, Mohamed Taha, and Henri Wautier. "Dioxazoline coupling of maleic anhydride modified polyethylene." Journal of Applied Polymer Science 97, no. 3 (2005): 837–43. http://dx.doi.org/10.1002/app.21793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nishii, Yuji, Masahiro Miura, Chandrababu Naidu Kona, and Rikuto Oku. "Peri-Selective Direct Acylmethylation and Amidation of Naphthalene Derivatives Using Iridium and Rhodium Catalysts." Synthesis 53, no. 17 (March 31, 2021): 3126–36. http://dx.doi.org/10.1055/a-1472-1059.

Full text
Abstract:
AbstractAn iridium-catalyzed acylmethylation and a rhodium-catalyzed amidation of naphthalene derivatives are reported, adopting sulfoxonium ylides and dioxazolones as carbene and nitrene transfer agents, respectively. The use of SMe group as a directing group was key to ensure the peri-selective functionalization, and it can be easily removed or diversely transformed to other synthetically useful functionalities after the catalysis.
APA, Harvard, Vancouver, ISO, and other styles
23

Liao, Xian-Zhang, Man Liu, and Lin Dong. "An Approach to Vinylidenequinazolines from Isoxazoles and Dioxazolones." Journal of Organic Chemistry 87, no. 5 (January 28, 2022): 3741–50. http://dx.doi.org/10.1021/acs.joc.1c02746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

van Vliet, Kaj M., and Bas de Bruin. "Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes." ACS Catalysis 10, no. 8 (March 30, 2020): 4751–69. http://dx.doi.org/10.1021/acscatal.0c00961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Samanta, Sadhanendu, Susmita Mondal, Debashis Ghosh, and Alakananda Hajra. "Rhodium-Catalyzed Directed C–H Amidation of Imidazoheterocycles with Dioxazolones." Organic Letters 21, no. 12 (June 12, 2019): 4905–9. http://dx.doi.org/10.1021/acs.orglett.9b01832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mi, Xia, Weisheng Feng, Chao Pi, and Xiuling Cui. "Iridium(III)-Catalyzed C–H Amidation of Nitrones with Dioxazolones." Journal of Organic Chemistry 84, no. 9 (April 4, 2019): 5305–12. http://dx.doi.org/10.1021/acs.joc.9b00300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chen, Jiajia, and Yuanzhi Xia. "Visible-Light-Induced Iron Catalysis for Nitrene Transfer Reactions with Dioxazolones." Chinese Journal of Organic Chemistry 41, no. 9 (2021): 3748. http://dx.doi.org/10.6023/cjoc202100069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jeoung, Daeun, Kunyoung Kim, Sang Hoon Han, Prithwish Ghosh, Suk Hun Lee, Saegun Kim, Won An, Hyung Sik Kim, Neeraj Kumar Mishra, and In Su Kim. "Phthalazinone-Assisted C–H Amidation Using Dioxazolones Under Rh(III) Catalysis." Journal of Organic Chemistry 85, no. 11 (April 10, 2020): 7014–23. http://dx.doi.org/10.1021/acs.joc.0c00352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Huang, Yanzhen, Chao Pi, Zhen Tang, Yangjie Wu, and Xiuling Cui. "Cp*Co(III)-catalyzed C H amidation of azines with dioxazolones." Chinese Chemical Letters 31, no. 12 (December 2020): 3237–40. http://dx.doi.org/10.1016/j.cclet.2020.08.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chalamet, Yvan, and Mohamed Taha. "Carboxyl terminated polyamide 12 chain extension using a dioxazoline coupling agent." Journal of Polymer Science Part A: Polymer Chemistry 35, no. 17 (December 1997): 3697–705. http://dx.doi.org/10.1002/(sici)1099-0518(199712)35:17<3697::aid-pola9>3.0.co;2-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mishra, Neeraj Kumar, Yongguk Oh, Mijin Jeon, Sangil Han, Satyasheel Sharma, Sang Hoon Han, Sung Hee Um, and In Su Kim. "Site-Selective C-H Amidation of Azobenzenes with Dioxazolones under Rhodium Catalysis." European Journal of Organic Chemistry 2016, no. 29 (September 27, 2016): 4976–80. http://dx.doi.org/10.1002/ejoc.201601096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tang, Jing‐Jing, Xiaoqiang Yu, Yi Wang, Yoshinori Yamamoto, and Ming Bao. "Interweaving Visible‐Light and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones." Angewandte Chemie 133, no. 30 (May 10, 2021): 16562–71. http://dx.doi.org/10.1002/ange.202016234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tang, Jing‐Jing, Xiaoqiang Yu, Yi Wang, Yoshinori Yamamoto, and Ming Bao. "Interweaving Visible‐Light and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones." Angewandte Chemie International Edition 60, no. 30 (May 10, 2021): 16426–35. http://dx.doi.org/10.1002/anie.202016234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Han, Gi Uk, Seohyun Shin, Yonghyeon Baek, Dongwook Kim, Kooyeon Lee, Jeung Gon Kim, and Phil Ho Lee. "Mechanochemical Iridium(III)-Catalyzed B-Amidation of o-Carboranes with Dioxazolones." Organic Letters 23, no. 21 (October 18, 2021): 8622–27. http://dx.doi.org/10.1021/acs.orglett.1c03336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jeon, Bomi, Uiseong Yeon, Jeong-Yu Son, and Phil Ho Lee. "Selective Rhodium-Catalyzed C–H Amidation of Azobenzenes with Dioxazolones under Mild Conditions." Organic Letters 18, no. 18 (August 26, 2016): 4610–13. http://dx.doi.org/10.1021/acs.orglett.6b02250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chamni, Supakarn, Jinquan Zhang, and Hongbin Zou. "Benign synthesis of unsymmetrical arylurea derivatives using 3-substituted dioxazolones as isocyanate surrogates." Green Chemistry Letters and Reviews 13, no. 3 (July 2, 2020): 246–57. http://dx.doi.org/10.1080/17518253.2020.1807616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, Xiaoyang, Song Song, and Ning Jiao. "Rh-catalyzed Transient Directing Group Promoted C-H Amidation of Benzaldehydes Utilizing Dioxazolones." Chinese Journal of Chemistry 36, no. 3 (January 11, 2018): 213–16. http://dx.doi.org/10.1002/cjoc.201700726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Guo, Wusheng, and Biwei Yan. "Recent Advances in Decarboxylative Conversions of Cyclic Carbonates and Beyond." Synthesis 54, no. 08 (December 7, 2021): 1964–76. http://dx.doi.org/10.1055/a-1715-7413.

Full text
Abstract:
AbstractIn recent years, functionalized cyclic organic carbonates have emerged as valuable building blocks for the construction of interesting and useful molecules upon decarboxylation under transition-metal catalysis. By employing suitable catalytic systems, the development of chemo-, regio-, stereo- and enantioselective methods for the synthesis of useful and interesting compounds has advanced greatly. On the basis of previous research on this topic, this short review highlights the synthetic potential of cyclic carbonates under transition-metal catalysis over the last two years.1 Introduction2 Transition-Metal-Catalyzed Decarboxylation of Vinyl Cyclic Carbonates3 Zwitterionic Enolate Chemistry Based On Transition-Metal Catalysis4 Decarboxylation of Alkynyl Cyclic Carbonates and Dioxazolones5 Conclusions and Perspectives
APA, Harvard, Vancouver, ISO, and other styles
39

Sheng, Yaoguang, Jianmin Zhou, Yi Gao, Bingbing Duan, Yi Wang, Aleksandr Samorodov, Guang Liang, Qiuhua Zhao, and Zengqiang Song. "Ruthenium(II)-Catalyzed Direct C7-Selective Amidation of Indoles with Dioxazolones at Room Temperature." Journal of Organic Chemistry 86, no. 3 (January 20, 2021): 2827–39. http://dx.doi.org/10.1021/acs.joc.0c02779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Tang, Jing-Jing, Xiaoqiang Yu, Yoshinori Yamamoto, and Ming Bao. "Visible-Light-Promoted Iron-Catalyzed N-Arylation of Dioxazolones with Arylboronic Acids." ACS Catalysis 11, no. 22 (November 3, 2021): 13955–61. http://dx.doi.org/10.1021/acscatal.1c04538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lee, Sumin, and Tomislav Rovis. "Rh(III)-Catalyzed Three-Component Syn-Carboamination of Alkenes Using Arylboronic Acids and Dioxazolones." ACS Catalysis 11, no. 14 (June 30, 2021): 8585–90. http://dx.doi.org/10.1021/acscatal.1c02406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Jie, Shanke Zha, Kehao Chen, Feifei Zhang, Chao Song, and Jin Zhu. "Quinazoline Synthesis via Rh(III)-Catalyzed Intermolecular C–H Functionalization of Benzimidates with Dioxazolones." Organic Letters 18, no. 9 (April 8, 2016): 2062–65. http://dx.doi.org/10.1021/acs.orglett.6b00691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Schroth, Werner, and Olaf Peters. "2-Acylmethyl-1, 3, 4-dioxazole durch Ketovinylierung von Hydroxamsäuren." Zeitschrift für Chemie 18, no. 2 (September 1, 2010): 57–58. http://dx.doi.org/10.1002/zfch.19780180204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Huang, Jie, Jun Ding, Tong-Mei Ding, Shuiyi Zhang, Yaqiu Wang, Feng Sha, Shu-Yu Zhang, Xin-Yan Wu, and Qiong Li. "Cobalt-Catalyzed Ortho-C(sp2)–H Amidation of Benzaldehydes with Dioxazolones Using Transient Directing Groups." Organic Letters 21, no. 18 (September 3, 2019): 7342–45. http://dx.doi.org/10.1021/acs.orglett.9b02632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Dhiman, Ankit Kumar, Ankita Thakur, Inder Kumar, Rakesh Kumar, and Upendra Sharma. "Co(III)-Catalyzed C–H Amidation of Nitrogen-Containing Heterocycles with Dioxazolones under Mild Conditions." Journal of Organic Chemistry 85, no. 14 (June 19, 2020): 9244–54. http://dx.doi.org/10.1021/acs.joc.0c01237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Khan, Bhuttu, Vikas Dwivedi, and Basker Sundararaju. "Cp*Co(III)‐Catalyzed o ‐Amidation of Benzaldehydes with Dioxazolones Using Transient Directing Group Strategy." Advanced Synthesis & Catalysis 362, no. 5 (January 8, 2020): 1195–200. http://dx.doi.org/10.1002/adsc.201901267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chalamet, Yvan, and Mohamed Taha. "In-line residence time distribution of dicarboxylic acid oligomers/dioxazoline chain extension by reactive extrusion." Polymer Engineering & Science 39, no. 2 (February 1999): 347–55. http://dx.doi.org/10.1002/pen.11421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chalamet, Yvan, and Mohamed Taha. "Kinetic and rheokinetic study of dicarboxylic fatty acid chain extension using a dioxazoline coupling agent." Journal of Applied Polymer Science 74, no. 4 (October 24, 1999): 1017–24. http://dx.doi.org/10.1002/(sici)1097-4628(19991024)74:4<1017::aid-app29>3.0.co;2-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nan, Jiang, Pu Chen, Xue Gong, Yan Hu, Qiong Ma, Bo Wang, and Yangmin Ma. "Metal-Free C–H [5 + 1] Carbonylation of 2-Alkenyl/Pyrrolylanilines Using Dioxazolones as Carbonylating Reagents." Organic Letters 23, no. 9 (April 15, 2021): 3761–66. http://dx.doi.org/10.1021/acs.orglett.1c01147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Massouh, Joe, Antoine Petrelli, Virginie Bellière‐Baca, Damien Hérault, and Hervé Clavier. "Rhodium(III)‐Catalyzed Aldehyde C−H Activation and Functionalization with Dioxazolones: An Entry to Imide Synthesis." Advanced Synthesis & Catalysis 364, no. 4 (December 29, 2021): 831–37. http://dx.doi.org/10.1002/adsc.202101099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography