Academic literature on the topic 'Diospongin A'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diospongin A.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Diospongin A"

1

Bates, Roderick W., and Ping Song. "Synthesis of diospongin A." Tetrahedron 63, no. 21 (May 2007): 4497–99. http://dx.doi.org/10.1016/j.tet.2007.03.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zúñiga, Andrea, Manuel Pérez, Zoila Gándara, Alioune Fall, Generosa Gómez, and Yagamare Fall. "Synthesis of diospongin A, ent-diospongin A and C-5 epimer of diospongin B from tri-O-acetyl-D-glucal." Arkivoc 2015, no. 7 (October 22, 2015): 195–215. http://dx.doi.org/10.3998/ark.5550190.p009.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bharath, Yada, Utkal Mani Choudhury, N. Sadhana, and Debendra K. Mohapatra. "The Mukaiyama type aldol reaction for the synthesis of trans-2,6-disubstituted tetrahydropyrans: synthesis of diospongin A and B." Organic & Biomolecular Chemistry 17, no. 41 (2019): 9169–81. http://dx.doi.org/10.1039/c9ob01549c.

Full text
Abstract:
The synthesis of 2,6-trans-disubstituted tetrahydropyrans following the Mukaiyama type aldol reaction through C–C bond formation demonstrates the practicality of this protocol in the total synthesis of diospongin A and B.
APA, Harvard, Vancouver, ISO, and other styles
4

Vaithegi, Kannan, and Kavirayani R. Prasad. "Total synthesis of (+)-diospongin A." Tetrahedron 76, no. 47 (November 2020): 131625. http://dx.doi.org/10.1016/j.tet.2020.131625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chandrasekhar, S., T. Shyamsunder, S. Jaya Prakash, A. Prabhakar, and B. Jagadeesh. "First total synthesis of (−)-diospongin B." Tetrahedron Letters 47, no. 1 (January 2006): 47–49. http://dx.doi.org/10.1016/j.tetlet.2005.10.129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meruva, Suresh Babu, Ramamohan Mekala, Akula Raghunadh, K. Raghavendra Rao, Vilas H. Dahanukar, T. V. Pratap, U. K. Syam Kumar, and P. K. Dubey. "Synthesis of tetrahedral diarylheptanoid ent-diospongin A and epimer-diospongin B by employing Julia–Kocienski olefination." Tetrahedron Letters 55, no. 34 (August 2014): 4739–41. http://dx.doi.org/10.1016/j.tetlet.2014.06.112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cossy, Janine, Cyril Bressy, and Florent Allais. "A Short and Efficient Synthesis of (-)-Diospongin A." Synlett 2006, no. 20 (December 2006): 3455–56. http://dx.doi.org/10.1055/s-2006-956485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hiebel, Marie-Aude, Béatrice Pelotier, and Olivier Piva. "Total synthesis of (+/−)-diospongin A via Prins reaction." Tetrahedron 63, no. 33 (August 2007): 7874–78. http://dx.doi.org/10.1016/j.tet.2007.05.089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ho, Tse-Lok, Bin Tang, Guohua Ma, and Pengfei Xu. "Concise Synthesis of Yashabushidiol A and (±)-Diospongin A." Journal of the Chinese Chemical Society 59, no. 3 (March 2012): 455–58. http://dx.doi.org/10.1002/jccs.201100664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meruva, Suresh Babu, Ramamohan Mekala, Akula Raghunadh, K. Raghavendra Rao, Vilas H. Dahanukar, T. V. Pratap, U. K. Syam Kumar, and P. K. Dubey. "ChemInform Abstract: Synthesis of Tetrahedral Diarylheptanoid ent-Diospongin A (I) and epimer-Diospongin B (II) by Employing Julia-Kocienski Olefination." ChemInform 46, no. 5 (January 15, 2015): no. http://dx.doi.org/10.1002/chin.201505215.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Diospongin A"

1

Raffier, Ludovic. "Application de la réaction de métathèse d'oléfines à l'obtention de molécules d'intérêt biologique." Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00986492.

Full text
Abstract:
La formation de liaisons C-C constitue un sujet de recherche primordial en chimie organique. Parmitoutes les techniques existantes, la métathèse d'oléfines a constitué une véritable révolution, notamment grâceau développement de catalyseurs efficaces et tolérants vis-à-vis de bon nombre de groupements fonctionnels.Cette réaction a été envisagée ici sur trois cibles d'intérêt biologique : la diospongine A, la nhatrangine A et leberkeleyamide A.De nombreuses molécules naturelles bioactives appartiennent aux familles des 1,7-diarylheptanoïdes et1,9-diarylnonanoïdes. Issue de la première, la diospongine A a dévoilé des propriétés anti-ostéoporotiquesprometteuses. A l'inverse, aucun produit naturel 1,8-diaryloctanoïde n'a encore été rapporté. Désireux d'étudier lapotentielle activité de tels composés, plusieurs séries d'homologues de la diospongine A ont été synthétisées,impliquant la formation d'intermédiaires tétrahydropyraniques communs par cyclisation de Prins, suivi d'uneséquence métathèse croisée / oxydation de Wacker, permettant ainsi l'introduction de la diversité chimique.La nhatrangine A, récemment isolée de la cyanobactérie Lyngbya majuscula, a montré une potentielleactivité contre la lignée cancéreuse CoL-2. Aucune synthèse n'ayant encore été rapportée, quatre déconnectionsont ici été envisagées, impliquant respectivement une métathèse cyclisante, une métathèse croisée, une additionde Michael énantiosélective organocatalysée ou encore une alkylation diastéréosélective selon Myers commeétape clé. Toutes ces approches ont en commun l'utilisation d'une réaction de trans aldolisation. Un intermédiaireavancé a ainsi pu être synthétisé.Le berkeleyamide A, isolé du champignon Penicillium rubrum, est une molécule possédant une activitéinhibitrice micromolaire des enzymes MMP-3 et caspases-1, impliquées notamment dans la croissance descellules cancéreuses. Trois synthèses de ce composé sont déjà décrites dans la littérature, toutes démarrant dupool chiral. Deux approches " rétron " sont ici proposées, impliquant notamment une allylation diastéréosélectived'imine, une métathèse croisée et une cyclisation de type Heck. Le squelette carboné de la molécule a ainsi étéobtenu.
APA, Harvard, Vancouver, ISO, and other styles
2

Brito, Júnior Gilmar Araújo. "Estudo metodológico da reação de Prins em ausência de solventes orgânicos e sua aplicação na síntese de substâncias bioativas." Universidade Federal de São Carlos, 2009. https://repositorio.ufscar.br/handle/ufscar/6457.

Full text
Abstract:
Made available in DSpace on 2016-06-02T20:36:24Z (GMT). No. of bitstreams: 1 2736.pdf: 21047421 bytes, checksum: 55df4acf61a3aff2bb08b8ffec4f2fa2 (MD5) Previous issue date: 2009-07-31
Financiadora de Estudos e Projetos
In this work it was done a methodological study on Prins cyclization reaction in the absence of organic solvents. The synthesis of target compounds was possible by using or the catalytic system pTSA.SiO2(gel) initially developed in this project, as shown in Figure I. As a initial proposal of this work, another catalytics systems were developed, this time using non-protonic Lewis acids. The catalytic system FeCl3.SiO2(aerosil) was shown to be the most advantageous among other catalytic systems developed in parallel experiments. The synthesis of target compounds FLOROL ® (6) and CLARYCET ® (8), in absence of organic solvents, was possible by using this catalytic system. The same catalytic system was employed to the preparation of the skeleton of the compound (+/-)- Diospongin A (Figure II). The developed catalytics systems showed to be effective on the catalysis of Prins cyclization reactions involving oxigenate compounds. But these systems had failed when homoallylics amines were employed and so it XII was not possible to obtain the compounds SS20846 A and pipecolic acid, as shown in Figure III.
Neste trabalho foi feito um estudo metodológico visando à reação de Ciclização de Prins em condições de ausência de solventes orgânicos. Com o sistema catalítico desenvolvido inicialmente (pTSA.SiO2(gel)), foi possível a preparação dos compostos de interesse industrial Florol® e Clarycet®, como mostrado na Figura I. Como proposta inicial do trabalho, outro sistema catalítico foi desenvolvido, desta vez utilizando ácidos de Lewis não protônicos. O sistema catalítico FeCl3.SiO2(aerosil) foi o que mais apresentou vantagens e desta vez, dentre outras substâncias, foi possível novamente a preparação dos compostos de interesse Florol® (6) e Clarycet® (8), em condições de ausência de solventes orgânicos. O mesmo sistema catalítico foi empregado visando a preparação do esqueleto do composto (+/-)-Diospongina A (Figura II) Os sistemas catalíticos desenvolvidos mostraram bons resultados frente à ciclização de Prins com compostos oxigenados. Porém esse sistema falhou frente à mesma reação com aminas homoalílicas, não sendo possível obter os compostos alvos SS20846 A e ácido pipecólico (Figura III)
APA, Harvard, Vancouver, ISO, and other styles
3

Hiebel, Marie-Aude. "Accès stéréocontrôlé aux tétrahydropyranes 2,6-disubstitués – Application à la synthèse totale de la diospongine A et du bistramide A." Lyon 1, 2008. http://www.theses.fr/2008LYO10169.

Full text
Abstract:
L’objectif principal de ce travail est de développer plusieurs voies d’accès à des fragments tétrahydropyranes afin de créer une bibliothèque d’analogues du fragment C1-C13 du bistramide A (partie Nord). L’efficacité et la simplicité de mise en oeuvre des équences réactionnelles sont privilégiées via l’utilisation de procédés tandem séquentiels impliquant la réaction de métathèse croisée. Plusieurs méthodes de formation de cycles tétrahydropyranes se basant respectivement sur les réactions de Prins, d’oxa-Michael, de SN2’ et d’iodoéthérification ont été effectuées. Ces méthodes ont été dans un deuxième temps appliquées à la synthèse stéréosélective de la partie Nord du bistramide A ainsi qu’à une autre molécule naturelle, la diospongine A
The aim of this work was first to develop straightforward methodologies to synthesize tetrahydropyrans in order to make libraries of analogues of the C1-C13 fragment of bistramide A (north part). The efficiency of the synthetic approaches was illustrated by the use of sequential tandem processes involving a cross metathesis reaction. By this way, different types of 2,6-disubstituted analogues were obtained by oxa-Michael reaction, SN2’ reaction and haloetherification. Furthermore, the use of the Prins reaction enabled to reach 2,4,6-trisubstituted tetrahydropyrans. In the meantime, these methodologies were applied to the stereoselective synthesis of the north part of bistramide A and to the diastereocontr olled synthesis of diospongin A, another natural product
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Kiyoun. "Stereoselective Syntheses of Tetrahydropyrans: Applications to the Synthesis of (+)-Leucascandrolide A, (+)-Dactylolide and (±)-Diospongin A." Diss., 2012. http://hdl.handle.net/10161/6164.

Full text
Abstract:

Substituted tetrahydropyrans are prevalent in natural products that show interesting biological and pharmacological activities. Therefore, demand for new synthetic approaches for the construction of substituted tetrahydropyrans has recently increased. Specifically, quick and facile access to substrates, excellent stereoselectivity and yield, versatility in substrate scope, and mild reaction conditions compatible with various functional groups are highly desirable characteristics in tetrahydropyran synthesis.

The first part of the dissertation details studies of the tandem and organocatalytic oxa-conjugate addition reactions in conjunction with a dithiane coupling reaction promoted by the gem-disubstituent effect for the stereoselective synthesis of 2,3,6-trisubstituted tetrahydropyrans. The reactions were applicable to a broad range of substrates and proceeded with excellent stereoselectivity. It is of note that the present protocol provides an access to thermodynamically less favorable 2,6-trans-tetrahydropyrans through a reagent controlled, organocatalytic oxa-conjugate addition. In addition, a temperature-dependent configurational switch allowed the preparation of both 2,3-trans-2,6-trans- and 2,3-cis-2,6-cis-tetrahydropyrans from a common substrate. The synthetic utility of a combination of the tandem and organocatalytic oxa-conjugate addition reaction and the dithiane coupling reaction was demonstrated in the formal synthesis of the cytotoxic macrolide (+)-leucascandrolide A, which possesses both the 2,6-cis-disubstituted tetrahydropyran and the 2,3-trans-2,6-trans-tetrahydropyran. We also demonstrated the potential of the organocatalytic 1,6-oxa-conjugate addition for the formation of the 2,6-cis-tetrahydropyran in the total synthesis of (+)-dactylolide.

The second part describes the facile and efficient approach to the synthesis of 2,6-cis-4-hydroxy-tetrahydropyrans via a tandem CM/thermal SN2′ reaction. The strategic placement of the hydroxy group at C(4) in the tether resulted in an enhancement of the diastereoselectivity in ring closure. The mildness of the thermal conditions allowed for the synthesis of 2,6-cis-4-hydroxy tetrahydropyrans from base-sensitive substrates without the use of protecting groups. The tandem reaction enabled a protecting-group-free synthesis of (±)-diospongin A.


Dissertation
APA, Harvard, Vancouver, ISO, and other styles
5

Vaithegi, K. "Total Synthesis of Natural Products Diospongin a, Cryptofolione, CryptopyranmoscatoneB2, SCH725674 and Towards the Total Synthesis of Palmerolide C." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4147.

Full text
Abstract:
First chapter of the thesis describes the total synthesis of tetrahydropyran containing natural products, diospongin A, cryptopyranmoscatone B2, hydroxy δ-lactone containing natural product cryptofolione and macrolactone Sch 725674. Section A of this chapter deals with total synthesis of diospongin A 1, involving a vinylogous Mukaiyama aldol reaction of the silyl enol ether 2 with the aldehyde 3. The natural product was synthesized in 5 linear steps from benzaldehyde with 13.2% overall yield (Scheme 1). Scheme 1: Total synthesis of diospongin A 1. Section B of this chapter, describes the total synthesis of cryptofolione 7, a δ-lactone containing a dihydroxy unit in the side chain. Enzymatic resolution of a β-hydroxy ketone 4 was utilized for the synthesis of aldehyde 6, which was further elaborated to access cryptofolione 7. The key reactions in the synthesis include base catalyzed isomerisation of aldehyde with DBU, Brown’s allylation and ring closing metathesis reaction (Scheme 2). Scheme 2: Total synthesis of cryptofolione 7. Section C of chapter 1 discloses the total synthesis of cryptopyaranmoscatone B2 (11), a natural product possessing a tetrahydropyran and δ-lactone units. Iron (III) chloride catalyzed cyclization of the diol 9 derived from commercially available lactol 8 furnished the tetrahydropyran is the key reaction in the synthesis (Scheme 3). Scheme 3: Stereoselective total synthesis of cryptopyranomoscatone B2 (11). . Section D of chapter 1 deals with the total synthesis of (+)-Sch 725674 (16) starting from known lactol 12 derived from 2-deoxy ribose. Addition of 4-pentenylmagnesium bromide to lactol 12 provided the diol 13. Elaboration of 13 with the acetate 14 by olefin cross metathesis and further transformations led to Sch 725674 (16) (Scheme 4). Scheme 4: Total synthesis of (+)-Sch 725674 (16). Chapter 2 of the thesis is concerned with the efforts towards the total synthesis of palmerolide C. During the course of present investigation, the putative structure of palmerolide C was revised. The efforts concerning the synthesis of putative and revised structures of palmerolide C 18 and 20 from tartaric acid and D-ribose is described (Scheme 5). Scheme 5: Towards the total synthesis of the proposed and revised structure of palmerolide C.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Diospongin A"

1

Lee, Kiyoun. Stereoselective Syntheses of Tetrahydropyrans: Applications to the Synthesis of -Leucascandrolide A, -Dactylolide and -Diospongin A. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Kiyoun. Stereoselective Syntheses of Tetrahydropyrans: Applications to the Synthesis of -Leucascandrolide a, -Dactylolide and -Diospongin A. Springer London, Limited, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Kiyoun. Stereoselective Syntheses of Tetrahydropyrans: Applications to the Synthesis of -Leucascandrolide a, -Dactylolide and -Diospongin A. Springer International Publishing AG, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography