To see the other types of publications on this topic, follow the link: Dimethyl methylphosphonate.

Journal articles on the topic 'Dimethyl methylphosphonate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Dimethyl methylphosphonate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Boes, Evita. "ANALISIS, IDENTIFIKASI PRECURSOR DAN HASIL DEGRADASI SENYAWA SENJATA KIMIA MENGGUNAKAN TEKNIK GAS CHROMATOGRAPHY MASS SPECTROMETRY– ELECTRON IONISASI (GCMS-EI)." Jurnal Kimia Terapan Indonesia 16, no. 1 (June 10, 2014): 1–9. http://dx.doi.org/10.14203/jkti.v16i1.8.

Full text
Abstract:
Telah dilakukan analisis, identifikasi precursor dan hasil degradasi senyawa senjata kimia diethyl methylphosphonat (DEMP), methyl phosphonic acid (MPA) dalam sampel air dan dimethyl methyl phosphonat (DMMP), ethyl phosphonic acid (EPA) dalam sampel tanah. Contoh yang dianalisa merupakan contoh senyawa tributilphosphat (TBP) 40 ug/mL dan poliethilene glycol 56,24 ug/mL ditambahkan sebagai background dan sampel tanah kering yang berpasir. Identifikasi dilakukan dengan metode kromatografi gas spektrometri massa - elektron ionisani (GCMS-EI). Ekstraksi fasa organik pada pH netral, sililasi dari fasa air yang diuapkan, di mana triethylamine/methanol-sililasi dan kation exchange-sililasi digunakan untuk ekstraksi senyawa - senyawa precursor dan hasil degradasi sebelum diinjeksikan ke GCMS. Dari hasil analisis diperoleh waktu retensi 8,9 dan 10,97 menit masing - masing untuk diethyl methylphosphonat dan bis(trimethylsilyl) methylphosphonate dalam sampel air sedangkan dalam sampel tanah 6,62 dan 12,06 menit untuk dimethyl methylphosphonat dan bis(trimethylsilyl) ethylphosphonate. Total Ion Chromatography (TIC) yang dihasilkan dari GCMS dievaluasi dengan menggunakan Library Data Base NIST (National Institute of Standards and Technology), dan AMDIS (Automated Mass Spectral Deconvolution and Identification System). Spektrum yang dihasilkan memberikan nilai base peak pada m/z = 97 untuk diethyl methylphosphonate , m/z = 225 untuk bis(trimethylsilyl) methylphosphonate, m/z = 94 untukdimethyl methylphosphonate dan m/z = 239 untuk bis(trimethylsilyl) ethylphosphonate sedangkan retention index (RI) yang dihitung digunakan untuk mengonfirmasi masing-masing senyawa precursorKata kunci : precursor, degradsi senyawa senjata kimia, base peak , waktu retensi, Total Ion KromatografiAnalysis, precursoridentification have been done and degradation compoundsof chemical weapon diethyl methylphosphonat , methyl phosphonic acid in water matrices, dimethyl methylphosphonat and ethyl phosphonic acidin soil samples. Water used for extracting those compounds was an example of simulation that contain tributilphosphat (TBP) 40 ug/mL and poliethylene glycol 56,24 ug/mL which added as a background and dry sandy soil samples. Identification was done by using Gas Chromatographic Mass Spectrometry – Electron Ionization (GCMS-EI) method. Neutral organic extraction, evaporated water - silylation, triethylamine/methanol-silylation and cation exchanged-silylation were performed to extract the precursor’s compounds from the samples, before being analyzed by gas chromatography mass spectrometry .The result of the analysis by Gas Chromatographic Mass Spectrometry method showed that the retention time (in min) was 8,9 and 10,97 for diethyl methylphosphonat and bis(trimethylsilyl) methylphosphonate in the water sample , while the retention time in soil sample was 6,62 and 12,06 for dimethyl methylphosphonat and bis(trimethylsilyl) ethylphosphonate . The result of Total Ion Chromatography (TIC) from GCMS was evaluated using NIST (National Institute of Standards and Technology) database library and AMDIS (Automated Mass Spectral Deconvolution and Identification System). The spectrum’s result gave the value of base peak, which are m/z = 97for diethyl methylphosphonat, m/z= 225 for bis(trimethylsilyl) methylphosphonate , m/z = 94 for dimethyl methylphosphonat and m/z = 239 for bis(trimethylsilyl) ethylphosphonate. On the other hand, the retention indice (RI) calculation was used to get the confirmation of each compounds of precursors. Key word : precursor, degradation of chemical weapon, base peak, retention time, totalion chromatography.
APA, Harvard, Vancouver, ISO, and other styles
2

Pan, Yong, Tengxiao Guo, Genwei Zhang, Junchao Yang, Liu Yang, and Bingqing Cao. "Detection of organophosphorus compounds using a surface acoustic wave array sensor based on supramolecular self-assembling imprinted films." Analytical Methods 12, no. 17 (2020): 2206–14. http://dx.doi.org/10.1039/d0ay00211a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tzou, T. Z., and S. W. Weller. "Catalytic Oxidation of Dimethyl Methylphosphonate." Journal of Catalysis 146, no. 2 (April 1994): 370–74. http://dx.doi.org/10.1006/jcat.1994.1075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fan, Chuan-Lei, and Li-Sheng Wang. "Vapor Pressure of Dimethyl Phosphite and Dimethyl Methylphosphonate." Journal of Chemical & Engineering Data 55, no. 1 (January 14, 2010): 479–81. http://dx.doi.org/10.1021/je900258f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aschmann, Sara M., Ernesto C. Tuazon, and Roger Atkinson. "Atmospheric Chemistry of Dimethyl Phosphonate, Dimethyl Methylphosphonate, and Dimethyl Ethylphosphonate." Journal of Physical Chemistry A 109, no. 51 (December 2005): 11828–36. http://dx.doi.org/10.1021/jp055286e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ampadu Boateng, Derrick, Gennady L. Gutsev, Puru Jena, and Katharine Moore Tibbetts. "Ultrafast coherent vibrational dynamics in dimethyl methylphosphonate radical cation." Physical Chemistry Chemical Physics 20, no. 7 (2018): 4636–40. http://dx.doi.org/10.1039/c7cp07261a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rusu, Camelia N., and John T. Yates. "Photooxidation of Dimethyl Methylphosphonate on TiO2Powder." Journal of Physical Chemistry B 104, no. 51 (December 2000): 12299–305. http://dx.doi.org/10.1021/jp002562a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Bolong, Xinwei Chen, Chen Su, Yutong Han, Huaizhang Wang, Min Zeng, Ying Wang, Ting Liang, Zhi Yang, and Lin Xu. "Enhanced dimethyl methylphosphonate detection based on two-dimensional WSe2 nanosheets at room temperature." Analyst 145, no. 24 (2020): 8059–67. http://dx.doi.org/10.1039/d0an01671c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Daeyoon, Dawoon Jung, Jeong Kyun Noh, and Jae-Hee Han. "Graphene Chemocapacitive Sensors for Dimethyl Methylphosphonate Detection." Science of Advanced Materials 10, no. 9 (September 1, 2018): 1268–73. http://dx.doi.org/10.1166/sam.2018.3309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Head, Ashley R., Xin Tang, Zachary Hicks, Linjie Wang, Hannes Bleuel, Scott Holdren, Lena Trotochaud, et al. "Thermal desorption of dimethyl methylphosphonate from MoO3." Catalysis, Structure & Reactivity 3, no. 1-2 (March 3, 2017): 112–18. http://dx.doi.org/10.1080/2055074x.2017.1278891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Aurian-Blajeni, B., and M. M. Boucher. "Interaction of dimethyl methylphosphonate with metal oxides." Langmuir 5, no. 1 (January 1989): 170–74. http://dx.doi.org/10.1021/la00085a032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zheng, Tiancheng, and Xiuyuan Ni. "Loading an organophosphorous flame retardant into halloysite nanotubes for modifying UV-curable epoxy resin." RSC Advances 6, no. 62 (2016): 57122–30. http://dx.doi.org/10.1039/c6ra08178a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rockley, N. L., and M. G. Rockley. "The FT-IR Analysis by PAS and KBr Pellet of Cation-Exchanged Clay Mineral and Phosphonate Complexes." Applied Spectroscopy 41, no. 3 (March 1987): 471–75. http://dx.doi.org/10.1366/0003702874448797.

Full text
Abstract:
A comparison is made between the KBr pellet and FT-IR/PAS spectra of a series of interlamellar-cation-exchanged montmorillonites. Spectra of these clay minerals after adsorption of dimethyl methylphosphonate are also compared by the two spectroscopic methods. It is shown that the two infrared methods yield complementary spectral information, while FT-IR/PAS produces spectra with better definition of the adsorbate bands in all cases and superior reliability for observation of interlamellar ion-induced spectral shifts. Dimethyl methylphosphonate is shown to undergo interlamellar insertion, with bonding occurring directly through the P=0 moiety to the cation of the clay mineral. The strength of the bonding varies with the charge density of the cation.
APA, Harvard, Vancouver, ISO, and other styles
14

Henych, Jiří, Andreas Mattsson, Jakub Tolasz, Václav Štengl, and Lars Österlund. "Solar light decomposition of warfare agent simulant DMMP on TiO2/graphene oxide nanocomposites." Catalysis Science & Technology 9, no. 8 (2019): 1816–24. http://dx.doi.org/10.1039/c9cy00059c.

Full text
Abstract:
Solar light-induced photodecomposition of organophosphorus warfare agent simulant dimethyl methylphosphonate (DMMP) on the surfaces of TiO2/graphene oxide (GO) nanocomposites was studied by in situ DRIFT spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
15

Tang, Xin, Zachary Hicks, Linjie Wang, Gerd Ganteför, Kit H. Bowen, Roman Tsyshevsky, Jianwei Sun, and Maija M. Kuklja. "Adsorption and decomposition of dimethyl methylphosphonate on size-selected (MoO3)3 clusters." Physical Chemistry Chemical Physics 20, no. 7 (2018): 4840–50. http://dx.doi.org/10.1039/c7cp08427g.

Full text
Abstract:
The adsorption and decomposition of dimethyl methylphosphonate (DMMP), a chemical warfare agent (CWA) simulant, on size-selected molybdenum oxide trimer clusters, i.e. (MoO3)3, was studied both experimentally and theoretically.
APA, Harvard, Vancouver, ISO, and other styles
16

Aguila, Ailette, Kevin E. O'Shea, Thomas Tobien, and Klaus-Dieter Asmus. "Reactions of Hydroxyl Radical with Dimethyl Methylphosphonate and Diethyl Methylphosphonate. A Fundamental Mechanistic Study." Journal of Physical Chemistry A 105, no. 33 (August 2001): 7834–39. http://dx.doi.org/10.1021/jp002367w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Head, Ashley R., Roman Tsyshevsky, Lena Trotochaud, Bryan Eichhorn, Maija M. Kuklja, and Hendrik Bluhm. "Electron Spectroscopy and Computational Studies of Dimethyl Methylphosphonate." Journal of Physical Chemistry A 120, no. 12 (March 22, 2016): 1985–91. http://dx.doi.org/10.1021/acs.jpca.6b01098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Nogueira, M. F. M., and E. M. Fisher. "Effects of dimethyl methylphosphonate on premixed methane flames." Combustion and Flame 132, no. 3 (February 2003): 352–63. http://dx.doi.org/10.1016/s0010-2180(02)00464-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hegde, R. I., C. M. Greenlief, and J. M. White. "Surface chemistry of dimethyl methylphosphonate on rhodium(100)." Journal of Physical Chemistry 89, no. 13 (June 1985): 2886–91. http://dx.doi.org/10.1021/j100259a035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Cao, Lixin, Steven L. Suib, Xia Tang, and Sunita Satyapal. "Thermocatalytic Decomposition of Dimethyl Methylphosphonate on Activated Carbon." Journal of Catalysis 197, no. 2 (January 2001): 236–43. http://dx.doi.org/10.1006/jcat.2000.3090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Rusu, Camelia N., and John T. Yates. "Adsorption and Decomposition of Dimethyl Methylphosphonate on TiO2." Journal of Physical Chemistry B 104, no. 51 (December 2000): 12292–98. http://dx.doi.org/10.1021/jp002560q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ewing, K. J., D. M. Dagenais, F. Bucholtz, and I. D. Aggarwal. "Fiber-Optic Raman Detection of Trace Levels of Phosphonate Vapors Chemisorbed onto an Alumina Substrate." Applied Spectroscopy 50, no. 5 (May 1996): 614–18. http://dx.doi.org/10.1366/0003702963905871.

Full text
Abstract:
Detection of ppm(v) levels of the nerve agent simulants dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP) by chemisorption to an alumina surface followed by fiberoptic Raman spectroscopic determination is described. Real-time measurements of the increase in the Raman line intensities with respect to time for DMMP and DIMP chemisorption to alumina are presented. A detection limit at the 95% confidence interval of 6 ppm(v) is calculated for DMMP vapors at a vapor flow rate of 100 mL/min. Factors which limit lower detection limits are identified and possible solutions presented.
APA, Harvard, Vancouver, ISO, and other styles
23

Kim, Taejun, Ju Hyun Yang, So Jeong Park, Huu-Quang Nguyen, Jeongkwon Kim, Ki-Ju Yee, Heesoo Jung, Jun-Gill Kang, and Youngku Sohn. "Photo-decontamination of chemical warfare dimethyl methylphosphonate, dimethyl phosphite, diethyl methylphosphonate, diethyl phosphite model molecules on Al and oxidized Al foils." Applied Catalysis B: Environmental 284 (May 2021): 119623. http://dx.doi.org/10.1016/j.apcatb.2020.119623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dirk, Shawn M., Stephen W. Howell, B. Katherine Price, Hongyou Fan, Cody Washburn, David R. Wheeler, James M. Tour, Joshua Whiting, and R. Joseph Simonson. "Vapor Sensing Using Conjugated Molecule-Linked Au Nanoparticles in a Silica Matrix." Journal of Nanomaterials 2009 (2009): 1–9. http://dx.doi.org/10.1155/2009/481270.

Full text
Abstract:
Cross-linked assemblies of nanoparticles are of great value as chemiresistor-type sensors. Herein, we report a simple method to fabricate a chemiresistor-type sensor that minimizes the swelling transduction mechanism while optimizing the change in dielectric response. Sensors prepared with this methodology showed enhanced chemoselectivity for phosphonates which are useful surrogates for chemical weapons. Chemoselective sensors were fabricated using an aqueous solution of gold nanoparticles that were then cross-linked in the presence of the silica precursor, tetraethyl orthosilicate with theα-,ω-dithiolate (which is derived from the in situ deprotection of 1,4-di(Phenylethynyl-4′,4″-diacetylthio)-benzene (1) with wet triethylamine). The cross-linked nanoparticles and silica matrix were drop coated onto interdigitated electrodes having 8 μm spacing. Samples were exposed to a series of analytes including dimethyl methylphosphonate (DMMP), octane, and toluene. A limit of detection was obtained for each analyte. Sensors assembled in this fashion were more sensitive to dimethyl methylphosphonate than to octane by a factor of 1000.
APA, Harvard, Vancouver, ISO, and other styles
25

Kittle, Joshua, Benjamin Fisher, Courtney Kunselman, Aimee Morey, and Andrea Abel. "Vapor Selectivity of a Natural Photonic Crystal to Binary and Tertiary Mixtures Containing Chemical Warfare Agent Simulants." Sensors 20, no. 1 (December 25, 2019): 157. http://dx.doi.org/10.3390/s20010157.

Full text
Abstract:
Vapor sensing via light reflected from photonic crystals has been increasingly studied as a means to rapidly identify analytes, though few studies have characterized vapor mixtures or chemical warfare agent simulants via this technique. In this work, light reflected from the natural photonic crystals found within the wing scales of the Morpho didius butterfly was analyzed after exposure to binary and tertiary mixtures containing dimethyl methylphosphonate, a nerve agent simulant, and dichloropentane, a mustard gas simulant. Distinguishable spectra were generated with concentrations tested as low as 30 ppm and 60 ppm for dimethyl methylphosphonate and dichloropentane, respectively. Individual vapors, as well as mixtures, yielded unique responses over a range of concentrations, though the response of binary and tertiary mixtures was not always found to be additive. Thus, while selective and sensitive to vapor mixtures containing chemical warfare agent simulants, this technique presents challenges to identifying these simulants at a sensitivity level appropriate for their toxicity.
APA, Harvard, Vancouver, ISO, and other styles
26

Rogacz, Diana, Jarosław Lewkowski, Zbigniew Malinowski, Agnieszka Matusiak, Marta Morawska, and Piotr Rychter. "Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants. Part 2. Their Ecotoxicological Impact and Phytotoxicity Test Toward Herbicidal Application in Agriculture." Molecules 23, no. 12 (December 1, 2018): 3173. http://dx.doi.org/10.3390/molecules23123173.

Full text
Abstract:
Background: The aim of this work was to evaluate phytotoxicity of the thiophene derivatives against three persistent weeds of a high degree of resistance (Galinsoga parviflora Cav., Rumex acetosa L., and Chenopodium album) as well as their ecotoxicological impact on Heterocypris incongruens. In addition, Aliivibrio fischeri was measured. Two of eight described aminophosphonates, namely dimethyl N-(2-methoxyphenyl)amino(2-thienyl)methylphosphonate (2d) and dimethyl N-(tert-butyl)- (2-thienyl)methylphosphonate (2h), have never been reported before. Methods: The phytotoxicity of tested aminophosphonates toward their potential application as soil-applied herbicides was evaluated according to the OECD 208 Guideline. Ecotoxicological properties of investigated compounds were made using the OSTRACODTOXKITTM and Microtox® tests. Results: Obtained results showed that four aminophosphonates have interesting herbicidal properties and N-(2-methylphenyl)amino- (2-thienyl)methylphosphonate (2a) was found to kill efficiently the most resistant plant Chenopodium album. None of the tested compounds showed important toxicity against Aliivibrio fischeri. However, their toxic impact on Heterocypris incongruens was significantly elevated. Conclusions: The aminophosphonate 2a showed herbicidal potential and it is not toxic against tested bacteria (EC50 over 1000 mg/L). It was found to be moderately toxic against ostracods [mortality 48% at 10 mg/kg of soil dry weight (s.d.w.)] and this problem should be solved by the use of the controlled release from a polymeric carrier.
APA, Harvard, Vancouver, ISO, and other styles
27

Pinkard, Brian R., Shreyas Shetty, John C. Kramlich, Per G. Reinhall, and Igor V. Novosselov. "Hydrolysis of Dimethyl Methylphosphonate (DMMP) in Hot-Compressed Water." Journal of Physical Chemistry A 124, no. 41 (September 16, 2020): 8383–89. http://dx.doi.org/10.1021/acs.jpca.0c05104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Henderson, Michael A., and J. M. White. "Adsorption and decomposition of dimethyl methylphosphonate on platinum(111)." Journal of the American Chemical Society 110, no. 21 (October 1988): 6939–47. http://dx.doi.org/10.1021/ja00229a002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Uhm, Han S., Soon C. Cho, Yong C. Hong, Yang G. Park, and Ju S. Park. "Destruction of dimethyl methylphosphonate using a microwave plasma torch." Applied Physics Letters 92, no. 7 (February 18, 2008): 071503. http://dx.doi.org/10.1063/1.2844859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mitchell, Mark B., V. N. Sheinker, and Eric A. Mintz. "Adsorption and Decomposition of Dimethyl Methylphosphonate on Metal Oxides." Journal of Physical Chemistry B 101, no. 51 (December 1997): 11192–203. http://dx.doi.org/10.1021/jp972724b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bertilsson, Lars, Karin Potje-Kamloth, Hans-Dieter Liess, Isak Engquist, and Bo Liedberg. "Adsorption of Dimethyl Methylphosphonate on Self-Assembled Alkanethiolate Monolayers." Journal of Physical Chemistry B 102, no. 7 (February 1998): 1260–69. http://dx.doi.org/10.1021/jp973215c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Holtzclaw, James R., Jeffrey R. Wyatt, and Joseph E. Campana. "Structure and fragmentation of dimethyl methylphosphonate and trimethyl phosphite." Organic Mass Spectrometry 20, no. 2 (February 1985): 90–97. http://dx.doi.org/10.1002/oms.1210200205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Cao, Lixin, Scott R. Segal, Steven L. Suib, Xia Tang, and Sunita Satyapal. "Thermocatalytic Oxidation of Dimethyl Methylphosphonate on Supported Metal Oxides." Journal of Catalysis 194, no. 1 (August 2000): 61–70. http://dx.doi.org/10.1006/jcat.2000.2914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Segal, Scott R., Lixin Cao, Steven L. Suib, Xia Tang, and Sunita Satyapal. "Thermal Decomposition of Dimethyl Methylphosphonate over Manganese Oxide Catalysts." Journal of Catalysis 198, no. 1 (February 2001): 66–76. http://dx.doi.org/10.1006/jcat.2000.3126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Trubitsyn, Dmitry A., and Alexander V. Vorontsov. "Experimental Study of Dimethyl Methylphosphonate Decomposition over Anatase TiO2." Journal of Physical Chemistry B 109, no. 46 (November 2005): 21884–92. http://dx.doi.org/10.1021/jp053793q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gordon, Wesley O., Brian M. Tissue, and John R. Morris. "Adsorption and Decomposition of Dimethyl Methylphosphonate on Y2O3 Nanoparticles." Journal of Physical Chemistry C 111, no. 8 (February 6, 2007): 3233–40. http://dx.doi.org/10.1021/jp0650376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dalavi, Swapnil, Mengqing Xu, Boris Ravdel, Liu Zhou, and Brett L. Lucht. "Nonflammable Electrolytes for Lithium-Ion Batteries Containing Dimethyl Methylphosphonate." Journal of The Electrochemical Society 157, no. 10 (2010): A1113. http://dx.doi.org/10.1149/1.3473828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Moss, John A., Steven H. Szczepankiewicz, Eleanor Park, and Michael R. Hoffmann. "Adsorption and Photodegradation of Dimethyl Methylphosphonate Vapor at TiO2Surfaces." Journal of Physical Chemistry B 109, no. 42 (October 2005): 19779–85. http://dx.doi.org/10.1021/jp052057j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chatterjee, B. K., R. Tosh, and R. Johnsen. "Ion/molecule reactions of atmospheric ions with dimethyl-methylphosphonate." International Journal of Mass Spectrometry and Ion Processes 103, no. 2-3 (January 1991): 81–92. http://dx.doi.org/10.1016/0168-1176(91)80080-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wilmsmeyer, Amanda R., Joshua Uzarski, Patrick J. Barrie, and John R. Morris. "Interactions and Binding Energies of Dimethyl Methylphosphonate and Dimethyl Chlorophosphate with Amorphous Silica." Langmuir 28, no. 30 (July 20, 2012): 10962–67. http://dx.doi.org/10.1021/la301938f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Cory, Marshall G., DeCarlos E. Taylor, Steven W. Bunte, Keith Runge, Joseph L. Vasey, and Douglas S. Burns. "Theoretical Methodology for Prediction of Tropospheric Oxidation of Dimethyl Phosphonate and Dimethyl Methylphosphonate." Journal of Physical Chemistry A 115, no. 10 (March 17, 2011): 1946–54. http://dx.doi.org/10.1021/jp107804m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yang, Szu-Wei, David C. Doetschman, Jürgen T. Schulte, Justin B. Sambur, Charles W. Kanyi, Jack D. Fox, Chrispin O. Kowenje, Barry R. Jones, and Neesha D. Sherma. "Sodium X-type faujasite zeolite decomposition of dimethyl methylphosphonate (DMMP) to methylphosphonate: Nucleophilic zeolite reactions I." Microporous and Mesoporous Materials 92, no. 1-3 (June 2006): 56–60. http://dx.doi.org/10.1016/j.micromeso.2005.12.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chung, You Kyoung, Seonggyun Ha, Tae Gyun Woo, Young Dok Kim, Changsik Song, and Seong Kyu Kim. "Binding thiourea derivatives with dimethyl methylphosphonate for sensing nerve agents." RSC Advances 9, no. 19 (2019): 10693–701. http://dx.doi.org/10.1039/c9ra00314b.

Full text
Abstract:
Binding energies and geometries of 1 : 1 complexes formed between nerve agent simulant DMMP and 13 thiourea derivatives (TUn) were calculated and compared with the sensing efficiencies of TUn from QCM analysis.
APA, Harvard, Vancouver, ISO, and other styles
44

Long, Jeffrey W., Christopher N. Chervin, Robert B. Balow, Seokmin Jeon, Joel B. Miller, Maya E. Helms, Jeffrey C. Owrutsky, Debra R. Rolison, and Kenan P. Fears. "Zirconia-Based Aerogels for Sorption and Degradation of Dimethyl Methylphosphonate." Industrial & Engineering Chemistry Research 59, no. 44 (September 25, 2020): 19584–92. http://dx.doi.org/10.1021/acs.iecr.0c02983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Segal, Scott R., Steven L. Suib, Xia Tang, and Sunita Satyapal. "Photoassisted Decomposition of Dimethyl Methylphosphonate over Amorphous Manganese Oxide Catalysts." Chemistry of Materials 11, no. 7 (July 1999): 1687–95. http://dx.doi.org/10.1021/cm980664w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tesfai, Teweldemedhin M., V. N. Sheinker, and Mark B. Mitchell. "Decomposition of Dimethyl Methylphosphonate (DMMP) on Alumina-Supported Iron Oxide." Journal of Physical Chemistry B 102, no. 38 (September 1998): 7299–302. http://dx.doi.org/10.1021/jp980690h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lee, K. Y., M. Houalla, D. M. Hercules, and W. K. Hall. "Catalytic Oxidative Decomposition of Dimethyl Methylphosphonate over Cu-Substituted Hydroxyapatite." Journal of Catalysis 145, no. 1 (January 1994): 223–31. http://dx.doi.org/10.1006/jcat.1994.1026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lee, Young-Jun, Jong-Gyu Kim, Joo-Hyung Kim, Jaesook Yun, and Won Jun Jang. "Detection of Dimethyl Methylphosphonate (DMMP) Using Polyhedral Oligomeric Silsesquioxane (POSS)." Journal of Nanoscience and Nanotechnology 18, no. 9 (September 1, 2018): 6565–69. http://dx.doi.org/10.1166/jnn.2018.15698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lama, Sanjeeb, Jinuk Kim, Sivalingam Ramesh, Young-Jun Lee, Jihyun Kim, and Joo-Hyung Kim. "Highly Sensitive Hybrid Nanostructures for Dimethyl Methyl Phosphonate Detection." Micromachines 12, no. 6 (May 31, 2021): 648. http://dx.doi.org/10.3390/mi12060648.

Full text
Abstract:
Nanostructured materials synthesized by the hydrothermal and thermal reduction process were tested to detect the dimethyl methylphosphonate (DMMP) as a simulant for chemical warfare agents. Manganese oxide nitrogen-doped graphene oxide with polypyrrole (MnO2@NGO/PPy) exhibited the sensitivity of 51 Hz for 25 ppm of DMMP and showed the selectivity of 1.26 Hz/ppm. Nitrogen-doped multi-walled carbon nanotube (N-MWCNT) demonstrated good linearity with a correlation coefficient of 0.997. A comparison between a surface acoustic wave and quartz crystal microbalance sensor exhibited more than 100-times higher sensitivity of SAW sensor than QCM sensor.
APA, Harvard, Vancouver, ISO, and other styles
50

Ampadu Boateng, Derrick, Mi’Kayla Word, and Katharine Tibbetts. "Probing Coherent Vibrations of Organic Phosphonate Radical Cations with Femtosecond Time-Resolved Mass Spectrometry." Molecules 24, no. 3 (January 31, 2019): 509. http://dx.doi.org/10.3390/molecules24030509.

Full text
Abstract:
Organic phosphates and phosphonates are present in a number of cellular components that can be damaged by exposure to ionizing radiation. This work reports femtosecond time-resolved mass spectrometry (FTRMS) studies of three organic phosphonate radical cations that model the DNA sugar-phosphate backbone: dimethyl methylphosphonate (DMMP), diethyl methylphosphonate (DEMP), and diisopropyl methylphosphonate (DIMP). Upon ionization, each molecular radical cation exhibits unique oscillatory dynamics in its ion yields resulting from coherent vibrational excitation. DMMP has particularly well-resolved 45 fs ( 732 ± 28 cm − 1 ) oscillations with a weak feature at 610–650 cm − 1 , while DIMP exhibits bimodal oscillations with a period of ∼55 fs and two frequency features at 554 ± 28 and 670–720 cm − 1 . In contrast, the oscillations in DEMP decay too rapidly for effective resolution. The low- and high-frequency oscillations in DMMP and DIMP are assigned to coherent excitation of the symmetric O–P–O bend and P–C stretch, respectively. The observation of the same ionization-induced coherently excited vibrations in related molecules suggests a possible common excitation pathway in ionized organophosphorus compounds of biological relevance, while the distinct oscillatory dynamics in each molecule points to the potential use of FTRMS to distinguish among fragment ions produced by related molecules.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography