Journal articles on the topic 'Dimensioncal crossover'

To see the other types of publications on this topic, follow the link: Dimensioncal crossover.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Dimensioncal crossover.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chalyi, A. V., E. V. Zaitseva, K. A. Chalyy, and G. V. Khrapiichuk. "Dimensional Crossover and Thermophysical Properties of Nanoscale Condensed Matter." Ukrainian Journal of Physics 60, no. 9 (September 2015): 885–91. http://dx.doi.org/10.15407/ujpe60.09.0885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Yao Tang, and Jia Li Hou. "A Genetic Algorithm with Weight-Based Encoding for One-Dimensional Bin Packing Problem." Applied Mechanics and Materials 182-183 (June 2012): 2100–2104. http://dx.doi.org/10.4028/www.scientific.net/amm.182-183.2100.

Full text
Abstract:
This paper proposes a specialized genetic algorithm (GA) based on an expended relational representation named weight-based encoding for solving one-dimensional bin packing problem (BPP-1). The encoding provides a totally constraint-handling scheme to address general and specific constraints, while naturally eliminates redundancy and infeasibility of previous representations for BPP-1. The current study performs experiments for solving some problem instances from a benchmark data set by our specific coded genetic algorithm with one-point, two-point and grouping crossovers. Experimental results show that the proposed methodology works well for solving BPP-1 and performs well on experimented benchmark instances. In addition, the results also show that two-point and grouping crossovers work better than one-point crossover in our experiments.
APA, Harvard, Vancouver, ISO, and other styles
3

SANDU, V., E. CIMPOIASU, C. C. ALMASAN, A. P. PAULIKAS, and B. W. VEAL. "INTERPLAY BETWEEN SPIN AND CRYSTAL LATTICES IN ANTIFERROMAGNETIC YBa2Cu3O6.25." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3208–11. http://dx.doi.org/10.1142/s0217979202013973.

Full text
Abstract:
In-plane ρ ab and out-of-plane ρ c resistivity measurements were performed on the same antiferromagnetic YBa 2 Cu 3 O 6.25 single crystal over a wide range of temperatures T. ρ ab (T) exhibits two crossovers with decreasing T: a crossover from metallic to weak localization behavior at 175 K and a second crossover to two-dimensional chiral variable-range hopping VRH behavior at 115 K. The latter reflects the topologic excitations induced in the spin system. ρ c (T) displays an [Formula: see text] dependence at high T and a VRH type dependence below 115 K. The T derivative of ρ c (T) shows a kink at 32.65 K which we attribute to the antiferromagnetic ordering of the Cu(1) spins.
APA, Harvard, Vancouver, ISO, and other styles
4

Bruckental, Yishay, Avner Shaulov, and Yosef Yeshurun. "Dimensional crossover in La1.85Sr0.15CuO4." Physica C: Superconductivity 460-462 (September 2007): 761–63. http://dx.doi.org/10.1016/j.physc.2007.03.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sotolongo-Costa, Oscar, Arezky H. Rodriguez, and G. J. Rodgers. "Dimensional crossover in fragmentation." Physica A: Statistical Mechanics and its Applications 286, no. 3-4 (November 2000): 638–42. http://dx.doi.org/10.1016/s0378-4371(00)00349-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liao, Sen-Ben, and Michael Strickland. "Dimensional crossover and effective exponents." Nuclear Physics B 497, no. 3 (July 1997): 611–38. http://dx.doi.org/10.1016/s0550-3213(97)00212-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McBrien, M. N., N. E. Hussey, L. Balicas, S. Horii, and H. Ikuta. "Dimensional crossover phenomena in PrBa2Cu4O8." Physica C: Superconductivity 388-389 (May 2003): 327–28. http://dx.doi.org/10.1016/s0921-4534(02)02478-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Z. X., E. Osquiguil, M. Maenhoudt, B. Wuyts, S. Libbrecht, and Y. Bruynseraede. "3D-2D dimensional crossover inYBa2Cu3O7films." Physical Review Letters 71, no. 19 (November 8, 1993): 3210–13. http://dx.doi.org/10.1103/physrevlett.71.3210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Continentino, Mucio A. "Dimensional crossover in heavy fermions." Physica B: Condensed Matter 259-261 (January 1999): 172–73. http://dx.doi.org/10.1016/s0921-4526(98)00743-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chakravarty, Sudip. "Dimensional Crossover in Quantum Antiferromagnets." Physical Review Letters 77, no. 21 (November 18, 1996): 4446–49. http://dx.doi.org/10.1103/physrevlett.77.4446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Guimarães, R. B., J. C. Fernandes, M. A. Continentino, H. A. Borges, C. S. Moura, J. B. M. da Cunha, and C. A. dos Santos. "Dimensional crossover in magnetic warwickites." Physical Review B 56, no. 1 (July 1, 1997): 292–99. http://dx.doi.org/10.1103/physrevb.56.292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nguyen Ba An and Eiichi Hanamura. "Dimensional crossover in organic networks." Physics Letters A 199, no. 3-4 (March 1995): 249–56. http://dx.doi.org/10.1016/0375-9601(95)00096-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Schneider, T. "Dimensional crossover in cuprate superconductors." Zeitschrift f�r Physik B Condensed Matter 85, no. 2 (June 1991): 187–95. http://dx.doi.org/10.1007/bf01313219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

GATICA, SILVINA M., M. MERCEDES CALBI, GEORGE STAN, R. ANDREEA TRASCA, and MILTON W. COLE. "QUASI-ONE DIMENSIONAL FLUIDS THAT EXHIBIT HIGHER DIMENSIONAL BEHAVIOR." International Journal of Modern Physics B 24, no. 25n26 (October 20, 2010): 5051–59. http://dx.doi.org/10.1142/s0217979210057195.

Full text
Abstract:
Fluids confined within narrow channels exhibit a variety of phases and phase transitions associated with their reduced dimensionality. In this review paper, we illustrate the crossover from quasi-one dimensional to higher effective dimensionality behavior of fluids adsorbed within different carbon nanotubes geometries. In the single nanotube geometry, no phase transitions can occur at finite temperature. Instead, we identify a crossover from a quasi-one dimensional to a two dimensional behavior of the adsorbate. In bundles of nanotubes, phase transitions at finite temperature arise from the transverse coupling of interactions between channels.
APA, Harvard, Vancouver, ISO, and other styles
15

Sernelius, Bo E. "Dimensional crossover for a quasi-one-dimensional polaron." Physical Review B 37, no. 12 (April 15, 1988): 7079–82. http://dx.doi.org/10.1103/physrevb.37.7079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Subaşi, A. L., S. Sevinçli, P. Vignolo, and B. Tanatar. "Dimensional crossover in two-dimensional Bose-Fermi mixtures." Laser Physics 20, no. 3 (February 2, 2010): 683–93. http://dx.doi.org/10.1134/s1054660x1005018x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jin, Xiaofan, Geoff Fudenberg, and Katherine S. Pollard. "Genome-wide variability in recombination activity is associated with meiotic chromatin organization." Genome Research 31, no. 9 (July 23, 2021): 1561–72. http://dx.doi.org/10.1101/gr.275358.121.

Full text
Abstract:
Recombination enables reciprocal exchange of genomic information between parental chromosomes and successful segregation of homologous chromosomes during meiosis. Errors in this process lead to negative health outcomes, whereas variability in recombination rate affects genome evolution. In mammals, most crossovers occur in hotspots defined by PRDM9 motifs, although PRDM9 binding peaks are not all equally hot. We hypothesize that dynamic patterns of meiotic genome folding are linked to recombination activity. We apply an integrative bioinformatics approach to analyze how three-dimensional (3D) chromosomal organization during meiosis relates to rates of double-strand-break (DSB) and crossover (CO) formation at PRDM9 binding peaks. We show that active, spatially accessible genomic regions during meiotic prophase are associated with DSB-favored loci, which further adopt a transient locally active configuration in early prophase. Conversely, crossover formation is depleted among DSBs in spatially accessible regions during meiotic prophase, particularly within gene bodies. We also find evidence that active chromatin regions have smaller average loop sizes in mammalian meiosis. Collectively, these findings establish that differences in chromatin architecture along chromosomal axes are associated with variable recombination activity. We propose an updated framework describing how 3D organization of brush-loop chromosomes during meiosis may modulate recombination.
APA, Harvard, Vancouver, ISO, and other styles
18

IIDA, Kazumasa, Jens HÄNISCH, and Michio NAITO. "Dimensional Crossover in Fe-based Superconductors." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 52, no. 6 (2017): 443–47. http://dx.doi.org/10.2221/jcsj.52.443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Iye, Tetsuya, Takenori Nagatochi, and Azusa Matsuda. "Dimensional crossover in underdoped Bi2.2Sr1.8Ca2Cu3O10+δ." Physica C: Superconductivity and its Applications 470 (December 2010): S121—S122. http://dx.doi.org/10.1016/j.physc.2009.10.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Trumper, Adolfo E., and Claudio J. Gazza. "Dimensional crossover in alternating spin chains." Physica B: Condensed Matter 320, no. 1-4 (July 2002): 340–42. http://dx.doi.org/10.1016/s0921-4526(02)00743-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Silva, E., R. Fastampa, M. Giura, and R. Marcon. "Temperature-induced dimensional crossover in BiSrCaCuO." Physica C: Superconductivity 185-189 (December 1991): 1795–96. http://dx.doi.org/10.1016/0921-4534(91)91023-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

O'Connor, D., and C. R. Stephens. "Critical phenomena during a dimensional crossover." Journal of Physics A: Mathematical and General 25, no. 1 (January 7, 1992): 101–8. http://dx.doi.org/10.1088/0305-4470/25/1/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wördenweber, R., and P. H. Kes. "Dimensional crossover in collective flux pinning." Physical Review B 34, no. 1 (July 1, 1986): 494–97. http://dx.doi.org/10.1103/physrevb.34.494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Reyes, D., and M. A. Continentino. "Dimensional crossover in anisotropic Kondo lattices." Journal of Physics: Condensed Matter 19, no. 40 (September 11, 2007): 406203. http://dx.doi.org/10.1088/0953-8984/19/40/406203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bulenda, M., U. C. Täuber, and F. Schwabl. "Dimensional crossover in dipolar magnetic layers." Journal of Physics A: Mathematical and General 33, no. 1 (December 15, 1999): 1–21. http://dx.doi.org/10.1088/0305-4470/33/1/301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sidorenko, A., C. Sürgers, T. Trappmann, and H. v. Löhneysen. "Dimensional crossover in fractal multilayered superconductors." Physica C: Superconductivity 235-240 (December 1994): 2615–16. http://dx.doi.org/10.1016/0921-4534(94)92528-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sidorenko, A. S., V. I. Dediu, and A. G. Sandler. "Double-dimensional crossover in layered superconductor." Bulletin of Materials Science 14, no. 4 (August 1991): 895–97. http://dx.doi.org/10.1007/bf02747445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Janke, W., and K. Nather. "Dimensional crossover in the XY model." Nuclear Physics B - Proceedings Supplements 30 (March 1993): 834–37. http://dx.doi.org/10.1016/0920-5632(93)90337-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Schmidt, A., and T. Schneider. "Dimensional crossover in the layeredxy-model." Zeitschrift f�r Physik B Condensed Matter 87, no. 3 (October 1992): 265–70. http://dx.doi.org/10.1007/bf01309278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Carlson, E. W., D. Orgad, S. A. Kivelson, and V. J. Emery. "Dimensional crossover in quasi-one-dimensional and high-Tcsuperconductors." Physical Review B 62, no. 5 (August 1, 2000): 3422–37. http://dx.doi.org/10.1103/physrevb.62.3422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

HU, YING, and ZHAOXIN LIANG. "DIMENSIONAL CROSSOVER AND DIMENSIONAL EFFECTS IN QUASI-TWO-DIMENSIONAL BOSE GASES." Modern Physics Letters B 27, no. 14 (May 16, 2013): 1330010. http://dx.doi.org/10.1142/s021798491330010x.

Full text
Abstract:
This paper gives a systematic review on studies of dimensional effects in pure- and quasi-two-dimensional (2D) Bose gases, focusing on the role of dimensionality in the fundamental relation among the universal behavior of breathing mode, scale invariance and dynamic symmetry. First, we illustrate the emergence of universal breathing mode in the case of pure 2D Bose gases, and elaborate on its connection with the scale invariance of the Hamiltonian and the hidden SO(2, 1) symmetry. Next, we proceed to quasi-2D Bose gases, where excitations are frozen in one direction and the scattering behavior exhibits a 3D to 2D crossover. We show that the original SO(2, 1) symmetry is broken by arbitrarily small 2D effects in scattering, which consequently shifts the breathing mode from the universal frequency. The predicted shift rises significantly from the order of 0.5% to more than 5% in transiting from the 3D-scattering to the 2D-scattering regime. Observing this dimensional effect directly would present an important step in revealing the interplay between dimensionality and quantum fluctuations in quasi-2D.
APA, Harvard, Vancouver, ISO, and other styles
32

Adami, Riccardo, Simone Dovetta, and Alice Ruighi. "Quantum graphs and dimensional crossover: the honeycomb." Communications in Applied and Industrial Mathematics 10, no. 1 (January 1, 2019): 109–22. http://dx.doi.org/10.2478/caim-2019-0016.

Full text
Abstract:
Abstract We summarize features and results on the problem of the existence of Ground States for the Nonlinear Schrödinger Equation on doubly-periodic metric graphs. We extend the results known for the two–dimensional square grid graph to the honeycomb, made of infinitely-many identical hexagons. Specifically, we show how the coexistence between one–dimensional and two–dimensional scales in the graph structure leads to the emergence of threshold phenomena known as dimensional crossover.
APA, Harvard, Vancouver, ISO, and other styles
33

Felner, I., D. Sprinzak, U. Asaf, and T. Kröner. "Crossover from two-dimensional to three-dimensional magnetic structure inPr1.5Ce0.5Sr2GaCu2O9." Physical Review B 51, no. 5 (February 1, 1995): 3120–27. http://dx.doi.org/10.1103/physrevb.51.3120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Šášik, R., and D. Stroud. "Three-dimensional to two-dimensional crossover in layered high-Tcsuperconductors." Physical Review B 52, no. 5 (August 1, 1995): 3696–701. http://dx.doi.org/10.1103/physrevb.52.3696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Adroja, D. T., J. G. M. Armitage, P. C. Riedi, M. R. Lees, and O. A. Petrenko. "Crossover from low-dimensional to three-dimensional ferromagnetism inCePd1−xPtxSballoys." Physical Review B 61, no. 2 (January 1, 2000): 1232–39. http://dx.doi.org/10.1103/physrevb.61.1232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Jian, and Jian-Sheng Wang. "Dimensional crossover of thermal conductance in nanowires." Applied Physics Letters 90, no. 24 (June 11, 2007): 241908. http://dx.doi.org/10.1063/1.2748342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Chan, Man-Chung, Zhao-Qing Zhang, and Po-Wan Woo. "Dimensional-crossover behavior in randomly layered media." Physical Review B 57, no. 14 (April 1, 1998): R8071—R8074. http://dx.doi.org/10.1103/physrevb.57.r8071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Awaji, Satoshi, Kazuo Watanabe, Norio Kobayashi, Hisanori Yamane, and Toshio Hirai. "Dimensional Crossover Effect of Pinning in YBa2Cu3O7Films." Japanese Journal of Applied Physics 32, Part 2, No. 12B (December 15, 1993): L1795—L1797. http://dx.doi.org/10.1143/jjap.32.l1795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lee, K. W., C. H. Lee, C. E. Lee, and J. K. Kang. "H1NMR study of the dimensional crossover inC10H21NH3Cl." Physical Review B 53, no. 21 (June 1, 1996): 13993–95. http://dx.doi.org/10.1103/physrevb.53.13993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Castellani, C., C. Di Castro, and W. Metzner. "Dimensional crossover from Fermi to Luttinger liquid." Physical Review Letters 72, no. 3 (January 17, 1994): 316–19. http://dx.doi.org/10.1103/physrevlett.72.316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ando, Yoichi, Seiki Komiya, Yasutoshi Kotaka, and Kohji Kishio. "Thermally induced dimensional crossover in single-crystalBi2Sr2CaCu2Ox." Physical Review B 52, no. 5 (August 1, 1995): 3765–68. http://dx.doi.org/10.1103/physrevb.52.3765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ishida, Hiroshi. "Dimensional Crossover of Plasmon in Semiconductor Superlattice." Journal of the Physical Society of Japan 55, no. 12 (December 15, 1986): 4396–407. http://dx.doi.org/10.1143/jpsj.55.4396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Smith, Leslie M., Jeffrey R. Chasnov, and Fabian Waleffe. "Crossover from Two- to Three-Dimensional Turbulence." Physical Review Letters 77, no. 12 (September 16, 1996): 2467–70. http://dx.doi.org/10.1103/physrevlett.77.2467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

WANG, Z. H. "DIMENSIONAL CROSSOVER IN Bi1.8Pb0.4Sr2Ca2Cu3Oy TEXTURED THICK FILM." Modern Physics Letters B 10, no. 21 (September 10, 1996): 1027–33. http://dx.doi.org/10.1142/s0217984996001164.

Full text
Abstract:
The temperature dependence of resistance of C -axis oriented Bi (2223) thick film from 300 K to 100 K at 0 T (zero magnetic field) were measured. By choosing T c in different ways, such as R/Rn=0.9, 0.5, 0.1, 0.01 and 0.001, they are shown that the different results could be obtained. The data were described in terms of the classic theory of thermodynamic fluctuations. Two crossover from 2D to 3D and 1D to 2D was observed very close to the critical temperature T c when T c only was defined as zero-resistance temperature. The zero-temperature coherence length was estimated.
APA, Harvard, Vancouver, ISO, and other styles
45

Zhao, B. R., X. G. Qiu, S. Q. Guo, J. L. Zhang, P. Xu, Y. Z. Zhang, Y. Y. Zhao, and L. Li. "A study of dimensional crossover in multilayers." Physica C: Superconductivity 204, no. 3-4 (January 1993): 341–48. http://dx.doi.org/10.1016/0921-4534(93)91018-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mikheev, Lev V. "Reentrant dimensional crossover in planar Ising superlattices." Journal of Statistical Physics 78, no. 1-2 (January 1995): 79–101. http://dx.doi.org/10.1007/bf02183339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

O'Connor, Denjoe, C. R. Stephens, and A. J. Bray. "Dimensional crossover in the large-N limit." Journal of Statistical Physics 87, no. 1-2 (April 1997): 273–91. http://dx.doi.org/10.1007/bf02181488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Giamarchi, T., S. Biermann, A. Georges, and A. Lichtenstein. "Dimensional crossover and deconfinement in Bechgaard salts." Journal de Physique IV (Proceedings) 114 (April 2004): 23–28. http://dx.doi.org/10.1051/jp4:2004114004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Verbanck, G., C. D. Potter, R. Schad, G. Gladyszewski, V. V. Moshchalkov, and Y. Bruynseraede. "Dimensional crossover in superconductor/spin-glass multilayers." Czechoslovak Journal of Physics 46, S2 (February 1996): 735–36. http://dx.doi.org/10.1007/bf02583675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

LEE, HYUN C. "OPTICAL CONDUCTIVITY OF ONE-DIMENSIONAL NARROW-GAP SEMICONDUCTORS." International Journal of Modern Physics B 16, no. 10 (April 20, 2002): 1499–509. http://dx.doi.org/10.1142/s0217979202010361.

Full text
Abstract:
The optical conductivities of two one-dimensional narrow-gap semiconductors, anticrossing quantum Hall edge states and carbon nanotubes, are studied using bosonization method. A lowest order renormalization group analysis indicates that the bare band gap can be treated perturbatively at high frequency/temperature. At very low energy scale the optical conductivity is dominated by the excitonic contribution, while at temperature higher than a crossover temperature the excitonic features are eliminated by thermal fluctuations. In case of carbon nanotubes the crossover temperature scale is estimated to be 300 K.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography