Academic literature on the topic 'Dimensioncal crossover'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dimensioncal crossover.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dimensioncal crossover"

1

Chalyi, A. V., E. V. Zaitseva, K. A. Chalyy, and G. V. Khrapiichuk. "Dimensional Crossover and Thermophysical Properties of Nanoscale Condensed Matter." Ukrainian Journal of Physics 60, no. 9 (September 2015): 885–91. http://dx.doi.org/10.15407/ujpe60.09.0885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Yao Tang, and Jia Li Hou. "A Genetic Algorithm with Weight-Based Encoding for One-Dimensional Bin Packing Problem." Applied Mechanics and Materials 182-183 (June 2012): 2100–2104. http://dx.doi.org/10.4028/www.scientific.net/amm.182-183.2100.

Full text
Abstract:
This paper proposes a specialized genetic algorithm (GA) based on an expended relational representation named weight-based encoding for solving one-dimensional bin packing problem (BPP-1). The encoding provides a totally constraint-handling scheme to address general and specific constraints, while naturally eliminates redundancy and infeasibility of previous representations for BPP-1. The current study performs experiments for solving some problem instances from a benchmark data set by our specific coded genetic algorithm with one-point, two-point and grouping crossovers. Experimental results show that the proposed methodology works well for solving BPP-1 and performs well on experimented benchmark instances. In addition, the results also show that two-point and grouping crossovers work better than one-point crossover in our experiments.
APA, Harvard, Vancouver, ISO, and other styles
3

SANDU, V., E. CIMPOIASU, C. C. ALMASAN, A. P. PAULIKAS, and B. W. VEAL. "INTERPLAY BETWEEN SPIN AND CRYSTAL LATTICES IN ANTIFERROMAGNETIC YBa2Cu3O6.25." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3208–11. http://dx.doi.org/10.1142/s0217979202013973.

Full text
Abstract:
In-plane ρ ab and out-of-plane ρ c resistivity measurements were performed on the same antiferromagnetic YBa 2 Cu 3 O 6.25 single crystal over a wide range of temperatures T. ρ ab (T) exhibits two crossovers with decreasing T: a crossover from metallic to weak localization behavior at 175 K and a second crossover to two-dimensional chiral variable-range hopping VRH behavior at 115 K. The latter reflects the topologic excitations induced in the spin system. ρ c (T) displays an [Formula: see text] dependence at high T and a VRH type dependence below 115 K. The T derivative of ρ c (T) shows a kink at 32.65 K which we attribute to the antiferromagnetic ordering of the Cu(1) spins.
APA, Harvard, Vancouver, ISO, and other styles
4

Bruckental, Yishay, Avner Shaulov, and Yosef Yeshurun. "Dimensional crossover in La1.85Sr0.15CuO4." Physica C: Superconductivity 460-462 (September 2007): 761–63. http://dx.doi.org/10.1016/j.physc.2007.03.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sotolongo-Costa, Oscar, Arezky H. Rodriguez, and G. J. Rodgers. "Dimensional crossover in fragmentation." Physica A: Statistical Mechanics and its Applications 286, no. 3-4 (November 2000): 638–42. http://dx.doi.org/10.1016/s0378-4371(00)00349-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liao, Sen-Ben, and Michael Strickland. "Dimensional crossover and effective exponents." Nuclear Physics B 497, no. 3 (July 1997): 611–38. http://dx.doi.org/10.1016/s0550-3213(97)00212-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McBrien, M. N., N. E. Hussey, L. Balicas, S. Horii, and H. Ikuta. "Dimensional crossover phenomena in PrBa2Cu4O8." Physica C: Superconductivity 388-389 (May 2003): 327–28. http://dx.doi.org/10.1016/s0921-4534(02)02478-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Z. X., E. Osquiguil, M. Maenhoudt, B. Wuyts, S. Libbrecht, and Y. Bruynseraede. "3D-2D dimensional crossover inYBa2Cu3O7films." Physical Review Letters 71, no. 19 (November 8, 1993): 3210–13. http://dx.doi.org/10.1103/physrevlett.71.3210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Continentino, Mucio A. "Dimensional crossover in heavy fermions." Physica B: Condensed Matter 259-261 (January 1999): 172–73. http://dx.doi.org/10.1016/s0921-4526(98)00743-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chakravarty, Sudip. "Dimensional Crossover in Quantum Antiferromagnets." Physical Review Letters 77, no. 21 (November 18, 1996): 4446–49. http://dx.doi.org/10.1103/physrevlett.77.4446.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Dimensioncal crossover"

1

Lammers, Sören [Verfasser], and Christof [Akademischer Betreuer] Wetterich. "Dimensional crossover of nonrelativistic bosons / Sören Lammers ; Betreuer: Christof Wetterich." Heidelberg : Universitätsbibliothek Heidelberg, 2017. http://d-nb.info/1178010848/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sommer, Ariel T. (Ariel Tjodolv). "Strongly interacting Fermi gases : non-equilibrium dynamics and dimensional crossover." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83820.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 163-176).
Experiments using ultracold atomic gases address fundamental problems in many-body physics. This thesis describes experiments on strongly-interacting gases of fermionic atoms, with a focus on non-equilibrium physics and dimensionality. One of the fundamental dissipative processes in two-component gases is the transport of spin due to relative motion between the two spin components. We generate spin transport in strongly-interacting Fermi gases using a spin dipole excitation and measure the transport coefficients describing spin drag and spin diffusion. For resonant interactions, we observe strong suppression of spin transport, with the spin transport coefficients reaching quantum-mechanical limits. Dimensionality plays an important role in the formation of bound states between pairs of particles. We tune the dimensionality of a Fermi gas from three to two dimensions (2D) using an optical lattice potential and observe the evolution of the pair binding energy using radio-frequency spectroscopy. The binding energy increases as the lattice depth increases, approaching the 2D limit. Gases with resonant interactions, which have no two-body bound state in three dimensions, show a large binding energy determined by the confinement energy of the lattice wells. The themes of non-equilibrium dynamics and dimensionality come together in the study of soliton excitations in superfluid Fermi gases. We create a planar defect in the superfluid order parameter of an elongated Fermi gas using detuned laser light. This defect moves through the gas as a solitary wave, or soliton, without dispersing. We measure the oscillation period of the soliton and find it to exceed the predictions of mean-field theory by an order of magnitude.
by Ariel T. Sommer.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Jie. "Magnetic Order and Dimensional Crossover in Optical Lattices with Repulsive Interaction." W&M ScholarWorks, 2013. https://scholarworks.wm.edu/etd/1539623610.

Full text
Abstract:
One of the most interesting and challenging problems in physics is understanding strongly correlated many-body systems, where strong interactions can yield many remarkable phenomena such as superfluidity in 4He, high-temperature superconductivity, etc. In order to attack these problems, we often need to reduce the complexity of the systems to simple models in hopes of getting better insights into the properties of the systems. The Hubbard model, the focus of this dissertation, is one of the most famous examples of such model, which describes a tunneling of electrons between nearest neighbor sites of a lattice with on-site interactions. This simple model is an important concept in condensed matter physics and provides rich understandings of electronic and magnetic properties of materials. Despite its simplicity, there is no general analytical solution to the Hubbard model beyond 1D.;The discovery of ultracold atoms and optical lattices opens up the possibility of emulating the Hubbard model in experiments. Optical lattices provide an ideal realization of the Hubbard model where relevant parameters can be tuned systematically. It makes theoretical studies of the Hubbard model increasingly attractive since a direct comparison between theoretical calculations and experimental results becomes more and more possible.;In this dissertation, the ground-state properties of the repulsive Hubbard model for weak to intermediate interaction strengths in two, three dimensions and their dimensional crossover are studied within the mean field theory. We show that the system exhibits unidirectional spin-density wave (SDW) order with antiferromagnetic correlations and a long wavelength modulation. The modulating wave is along the [0011-direction at low interaction strength U/t and along the [1111-direction at higher U/t. The evolution of the wavelength of the SDW is determined as a function of U/t, the density, and t⊥/t. With an analysis of the pairing of spins based on nesting and deformation of the Fermi surface, we discuss how these results can be rationalized and how a simple, predictive model can be constructed for the properties of the SDW states.
APA, Harvard, Vancouver, ISO, and other styles
4

Böttcher, Igor [Verfasser], and Christof [Akademischer Betreuer] Wetterich. "Dimensional BCS-BEC crossover in ultracold Fermi gases / Igor Böttcher ; Betreuer: Christof Wetterich." Heidelberg : Universitätsbibliothek Heidelberg, 2014. http://d-nb.info/1180301226/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Garst, Markus [Verfasser]. "Aspects of Quantum Phase Transitions: Grüneisen Parameter, Dimensional Crossover and Coupled Impurities / Markus Garst." Aachen : Shaker, 2004. http://d-nb.info/1170537421/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brillon, Charles. "Le crossover dimensionel dans la chaleur spécifique du modèle de Hubbard demi-rempli." Mémoire, Université de Sherbrooke, 2007. http://savoirs.usherbrooke.ca/handle/11143/4770.

Full text
Abstract:
Un des modèles théoriques les plus susceptibles d'expliquer le fonctionnement des supraconducteurs à haute température critique (SHTC) est le modèle de Hubbard . On comprend de plus en plus ce qui se passe en une dimension (1D) puisque sa solution est connue. Cependant, les calculs de chaleur spécifique montrent que la nature des excitations du modèle en 1D et en 2D (deux dimensions) n'est vraisemblablement pas la même dans les régimes dits de fort et faible couplage. On peut observer ce qui se passe entre les régimes 1D et 2D en introduisant un paramètre d'anisotropie variant continûment, soit: une intégrale de saut interchaîne t[indice]y , telle que 0 ? t[indice]y ? t[îndice]x ; t[indice]x représente ici l'intégrale de saut entre deux atomes voisins d'une même chaîne. On utilise ici la méthode Monte Carlo quantique développée par Blankenbecler, Scalapino et Sugar (MCQ) (BSS), combinée à une nouvelle technique de calcul de la chaleur spécifique dont l'idée de base est de calculer une dérivée aux différences finies en deux points assez peu éloignés l'un de l'autre, de telle sorte que l'on peut utiliser les mêmes configurations de champs de Hubbard-Stratonovich pour ces deux points et ainsi espérer réduire les effets des fluctuations statistiques. Si l'on se sert du nombre de bosses dans la chaleur spécifique comme critère pour discrimer les régime 1D et 2D (une bosse en 1D et deux bosses en 2D), on conclut que le crossover 1D-2D se situe entre t[indice]y ? 0.4t[indice]x et t[indice]y ? 0.6t[indice]x .
APA, Harvard, Vancouver, ISO, and other styles
7

Reimann, Thomas. "Resonant spin dynamics and 3D-1D dimensional crossovers in ultracold Fermi gases." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE029/document.

Full text
Abstract:
L’exploration de systèmes quantiques à N corps fortement corrélés représente l’un des domaines de recherche les plus stimulants de la physique contemporaine. Au cours des trente dernières années, les vapeurs diluées d’atomes neutres en suspension dans le vide et contrôlées par un laser sont devenues une plate-forme polyvalente et formidable pour l’étude de tels systèmes. L’intérêt principal réside dans la capacité d’ajuster arbitrairement la force de l’interaction atomique au moyen de résonances de Feshbach induites magnétiquement, ainsi que la possibilité de créer une large gamme de potentiels via des champs optiques précisément adaptés. Cette thèse présente les résultats récents de l’expérience FerMix, consacrée à l’étude des systèmes quantiques à plusieurs corps fermioniques à des températures ultra-basses utilisant les atomes alcalins 40K et 6Li. Les principaux résultats présentés dans ce texte sont doubles. Premièrement, nous rapportons la caractérisation expérimentale d’une nouvelle résonance de Feshbach (s,d)-wave du 40K, dont les résultats sont comparés aux prédictions théoriques correspondantes. En particulier, le spectre du taux de perte inélastique est déterminé pour différentes températures et profondeurs de piège, ce qui nous permet d’identifier les pertes en tant que processus à deux corps. De plus, il est confirmé que le canal d’entrée dominant est de type s-wave. À l’aide de modèles d’équation de taux, nous analysons le réchauffement observé de l’ensemble atomique et trouvons que le comportement est cohérent avec l’état lié prévu L = 2 présent dans le canal de sortie. Enfin, nous étudions expérimentalement la dynamique des populations de spin induite par les collisions inélastiques renforcées par résonance dans l’onde d, en observant un bon accord avec nos modèles numériques. En second lieu, nous résumons nos progrès dans l’étude des croisements dimensionnels entre le liquide de Tomonaga-Luttinger en 1D et le liquide de Landau-Fermi en 3D en utilisant les gaz de Fermi de 40K confinés dans un réseau optique à grand pas. Cela inclut à la fois les considérations de conception fondamentales et l’installation du matériel expérimental requis
The exploration of strongly correlated quantum many-body systems represents one of the most challenging fields of research of contemporary physics. Over the past thirty years, dilute vapors of neutral atoms suspended in vacuum and controlled with laser light have become a versatile and powerful platform for the study of such systems. At the very heart lies the ability to arbitrarily tune the interaction strength by means of magnetically induced Feshbach resonances as well as the possibility to create a wide range of potential landscapes via precisely tailored optical fields. This thesis reports on the recent results of the FerMix experiment, which is dedicated to the study of fermionic quantum many-body-systems at ultralow temperatures using the Alkali atoms 40K and 6Li. The main results presented in this text are twofold. First, we report on the experimental characterization of a novel (s,d)-wave Feshbach resonance in 6Li, the results of which are compared to the corresponding theoretical predictions. In particular, the spectrum of the inelastic loss rate is determined for different temperatures and trap depths, which enables us to identify the losses as two-body processes. Moreover, the dominant entrance channel is confirmed to be s-wave in nature. Using rate equation models we analyze the observed heating of the atomic ensemble and find the behavior to be consistent with the predicted L = 2 bound state present in the exit channel. Finally, we investigate experimentally the dynamics of the spin populations driven by resonantly enhanced inelastic collisions in dwave, observing good agreement with our numerical models. Second, we summarize our progress towards the study of dimensional crossovers between the Tomonaga-Luttinger liquid in 1D and the Landau-Fermi liquid in 3D using Fermi gases of 40K confined in a large spacing optical lattice. This includes both the fundamental design considerations as well as the implementation of the required experimental hardware
APA, Harvard, Vancouver, ISO, and other styles
8

Ries, Martin Gerhard [Verfasser], and Selim [Akademischer Betreuer] Jochim. "A Two-Dimensional Fermi Gas in the BEC-BCS Crossover / Martin Gerhard Ries ; Betreuer: Selim Jochim." Heidelberg : Universitätsbibliothek Heidelberg, 2015. http://d-nb.info/1180301994/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vignarooban, Kandasamy. "Boson Mode, Dimensional Crossover, Medium Range Structure and Intermediate Phase in Lithium- and Sodium-Borate Glasses." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1353100044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Takeuchi, Tsunehiro, Takeshi Kondo, Takio Kitao, Hiroyuki Kaga, Hongbo Yang, Hong Ding, Adam Kaminski, and Juan Carlos Campuzano. "Two- to Three-Dimensional Crossover in the Electronic Structure of (Bi,Pb)_2(Sr; La)_2 CuO_6+δ from Angle-Resolved Photoemission Spectroscopy." The American Physical Society, 2005. http://hdl.handle.net/2237/7155.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Dimensioncal crossover"

1

Ramsay, Elizabeth. Dimensional crossover in excitations of thin 4He films. 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dimensioncal crossover"

1

Kikoin, K., I. Kuzmenko, S. Gredeskul, and Y. Avishai. "Dimensional Crossover in 2D Crossbars." In Recent Trends in Theory of Physical Phenomena in High Magnetic Fields, 89–103. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0221-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Zhao-Qing, and Ping Sheng. "Wave Confinement and Localization: Dimensional Crossover Effect." In Photonic Band Gap Materials, 703–14. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1665-4_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chalyi, Alexander V. "Dimensional Crossover in Liquids in Reduced Geometry." In Springer Proceedings in Physics, 31–49. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20875-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chittipeddi, Sailesh, Arthur J. Epstein, and Joel S. Miller. "Dimensional Crossover in the Molecular Ferromagnet Decamethylferrocenium Tetracyanoethenide." In Organic and Inorganic Low-Dimensional Crystalline Materials, 377–80. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-2091-1_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Biermann, S., A. Georges, T. Giamarchi, and A. Lichtenstein. "Quasi One-Dimensional Organic Conductors: Dimensional Crossover and Some Puzzles." In Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, 81–102. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0530-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schulz, H. J. "The Crossover from One to Three Dimensions: Peierls and Spin-Peierls Instabilities." In Low-Dimensional Conductors and Superconductors, 95–112. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-3611-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sugawara, Ken. "The Dimensional Crossover Triggered by Vortex-Lattice Dislocations." In Advances in Superconductivity XII, 335–37. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-66877-0_97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lang, Guillaume. "Dimensional Crossovers in a Gas of Noninteracting Spinless Fermions." In Correlations in Low-Dimensional Quantum Gases, 139–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05285-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Potemska, E., O. Timofeevskaia, I. D. Vagner, and P. Wyder. "Dimensional Crossover and Dissipation of Helicons and QHE Electrodynamics." In Recent Trends in Theory of Physical Phenomena in High Magnetic Fields, 309–22. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0221-9_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lebed, Andrei. "Field-Induced Spin–Density Waves and Dimensional Crossovers." In The Physics of Organic Superconductors and Conductors, 25–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-76672-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dimensioncal crossover"

1

Wierschem, Keola, and Pinaki Sengupta. "Dimensional Crossover in Quasi-One-Dimensional Spin-1 Heisenberg Antiferromagnets." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.012005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Park, J., S. Zhang, V. Milner, and A. Z. Genack. "Delocalization transition in dimensional crossover in layered media." In Frontiers in Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/fio.2008.fthj4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Anderson, Kurt S., and YuHung Hsu. "Crossover Strategy for Improved Solution Space Exploration With Genetic Algorithms." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/dac-5617.

Full text
Abstract:
Abstract The following paper presents a modified crossover operator to extend the exploration capability in Genetic Algorithms for high dimensional optimization problems. Traditional strategies apply crossover once on a pair of selected chromosomes to generate two offspring by randomly selecting a single crossover location within the chromosomal length. The proposed method applies crossover once on each separate gene (variable) instead of on the entire chromosome. To further accelerate exploration of the Genetic Algorithm, nonuniform distribution of the respective crossover position on each gene has also been studied. The empirical results show that Genetic Algorithms with the proposed crossover strategies can find optimal or near optimal solutions within fewer generations than traditional single point crossover.
APA, Harvard, Vancouver, ISO, and other styles
4

PRISCHEPA, S. L., C. ATTANASIO, C. COCCORESE, L. MARITATO, M. SALVATO, and A. N. LYKOV. "DIMENSIONAL CROSSOVERS IN SUPERCONDUCTOR - SPIN GLASS NANOSTRUCTURES." In Reviews and Short Notes to Nanomeeting '97. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814503938_0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Olesen, Anders C., Torsten Berning, and Søren Knudsen Kær. "Experimental Validation of Methanol Crossover in a Three-Dimensional, Two-Fluid Model of a Direct Methanol Fuel Cell." In ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2012 6th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fuelcell2012-91170.

Full text
Abstract:
A fully coupled three-dimensional, steady-state, two-fluid, multi-component and non-isothermal DMFC model has been developed in the commercial CFD package CFX 13 (ANSYS inc.). It accounts for the presence of micro porous layers, non-equilibrium phase change, and methanol and water uptake in the ionomer phase of the catalytic layer, and detailed membrane transport of methanol and water. In order to verify the models ability to predict methanol crossover, simulation results need to be compared with experimental measurements under different current densities along with air and methanol stoichiometries. Methanol crossover be indirectly measured based on the combined anode and cathode exhaust CO2 mole fraction and by accounting for the CO2 production at the anode as a function of current density. This approach is simple and assumes that all crossed over methanol is oxidized. Moreover, it takes CO2 crossover into account.
APA, Harvard, Vancouver, ISO, and other styles
6

Gao, Song, Sanyou Zeng, Bo Xiao, Lei Zhang, Yulong Shi, Xin Tian, Yang Yang, et al. "An orthogonal multi-objective evolutionary algorithm with lower-dimensional crossover." In 2009 IEEE Congress on Evolutionary Computation (CEC 2009). IEEE, 2009. http://dx.doi.org/10.1109/cec.2009.4983180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jovic, Dragana M., Cornelia Denz, and Milivoj R. Belic. "Anderson localization of light in photonic lattices for dimensional crossover." In SPIE Photonics Europe, edited by Benjamin J. Eggleton, Alexander L. Gaeta, and Neil G. Broderick. SPIE, 2012. http://dx.doi.org/10.1117/12.922322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Asano, Kenichi. "Mott transition and crossover in quasi-one-dimensional electron-hole systems." In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mukherjee, Amrita, and Atanu Nandy. "Flux dependent semiconductor-metal crossover in a quasi one-dimensional lattice." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moon, Buyng-Ro, Yoon-Sik Lee, and Chun-Kyung Kim. "Genetic VLSI circuit partitioning with two-dimensional geographic crossover and zigzag mapping." In the 1997 ACM symposium. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/331697.331754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography