Academic literature on the topic 'Dimensionality reduction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dimensionality reduction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dimensionality reduction"
Cheng, Long, Chenyu You, and Yani Guan. "Random Projections for Non-linear Dimensionality Reduction." International Journal of Machine Learning and Computing 6, no. 4 (August 2016): 220–25. http://dx.doi.org/10.18178/ijmlc.2016.6.4.601.
Full textMarchette, David J., and Wendy L. Poston. "Local dimensionality reduction." Computational Statistics 14, no. 4 (September 12, 1999): 469–89. http://dx.doi.org/10.1007/s001800050026.
Full textSun, Yu-Yin, Michael Ng, and Zhi-Hua Zhou. "Multi-Instance Dimensionality Reduction." Proceedings of the AAAI Conference on Artificial Intelligence 24, no. 1 (July 3, 2010): 587–92. http://dx.doi.org/10.1609/aaai.v24i1.7700.
Full textKoren, Y., and L. Carmel. "Robust linear dimensionality reduction." IEEE Transactions on Visualization and Computer Graphics 10, no. 4 (July 2004): 459–70. http://dx.doi.org/10.1109/tvcg.2004.17.
Full textLotlikar, R., and R. Kothari. "Fractional-step dimensionality reduction." IEEE Transactions on Pattern Analysis and Machine Intelligence 22, no. 6 (June 2000): 623–27. http://dx.doi.org/10.1109/34.862200.
Full textGottlieb, Lee-Ad, Aryeh Kontorovich, and Robert Krauthgamer. "Adaptive metric dimensionality reduction." Theoretical Computer Science 620 (March 2016): 105–18. http://dx.doi.org/10.1016/j.tcs.2015.10.040.
Full textPang, Rich, Benjamin J. Lansdell, and Adrienne L. Fairhall. "Dimensionality reduction in neuroscience." Current Biology 26, no. 14 (July 2016): R656—R660. http://dx.doi.org/10.1016/j.cub.2016.05.029.
Full textLovaglio, Pietro Giorgio, and Giorgio Vittadini. "Multilevel dimensionality-reduction methods." Statistical Methods & Applications 22, no. 2 (September 27, 2012): 183–207. http://dx.doi.org/10.1007/s10260-012-0215-2.
Full textCarter, Kevin, Raviv Raich, William Finn, and Alfred Hero,III. "Information-Geometric Dimensionality Reduction." IEEE Signal Processing Magazine 28, no. 2 (March 2011): 89–99. http://dx.doi.org/10.1109/msp.2010.939536.
Full textGonen, Mehmet. "Bayesian Supervised Dimensionality Reduction." IEEE Transactions on Cybernetics 43, no. 6 (December 2013): 2179–89. http://dx.doi.org/10.1109/tcyb.2013.2245321.
Full textDissertations / Theses on the topic "Dimensionality reduction"
Ariu, Kaito. "Online Dimensionality Reduction." Licentiate thesis, KTH, Reglerteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290791.
Full textDenna avhandling studerar algoritmer för datareduktion som lär sig från sekventiellt inhämtad data. Vi fokuserar speciellt på frågeställningar som uppkommer i utvecklingen av rekommendationssystem och i identifieringen av heterogena grupper av användare från data. För rekommendationssystem betraktar vi ett system med m användare och n objekt. I varje runda observerar algoritmen en slumpmässigt vald användare och rekommenderar ett objekt. En viktig begränsning i vår problemformuleringar att rekommendationer inte får upprepas: samma objekt inte kan rekommenderas till samma användartermer än en gång. Vi betraktar problemet som en variant av det flerarmadebanditproblemet och analyserar systemprestanda i termer av "ånger” under olika antaganden.Vi härleder fundamentala gränser för ånger och föreslår algoritmer som är (ordningsmässigt) optimala. En intressant komponent av vår analys är att vi lyckas att karaktärisera hur vart och ett av våra antaganden påverkar systemprestandan. T.ex. kan vi kvantifiera prestandaförlusten i ånger på grund av att rekommendationer inte får upprepas, på grund avatt vi måste lära oss statistiken för vilka objekt en användare är intresserade av, och för kostnaden för att lära sig den lågdimensionella rymden för användare och objekt. För problemet med hur man bäst identifierar grupper av användare härleder vi fundamentala gränser för hur snabbt det går att identifiera kluster. Vi gör detta för algoritmer som har samtidig tillgång till all data och för algoritmer som måste lära sig genom sekventiell inhämtning av data. Med tillgång till all data kan vår algoritm uppnå den optimala prestandan ordningsmässigt. När data måste inhämtas sekventiellt föreslår vi en algoritm som är inspirerad av den nedre gränsen på vad som kan uppnås. För båda problemen utvärderar vi de föreslagna algoritmerna numeriskt och jämför den praktiska prestandan med de teoretiska garantierna.
QC 20210223
LEGRAMANTI, SIRIO. "Bayesian dimensionality reduction." Doctoral thesis, Università Bocconi, 2021. http://hdl.handle.net/11565/4035711.
Full textWe are currently witnessing an explosion in the amount of available data. Such growth involves not only the number of data points but also their dimensionality. This poses new challenges to statistical modeling and computations, thus making dimensionality reduction more central than ever. In the present thesis, we provide methodological, computational and theoretical advancements in Bayesian dimensionality reduction via novel structured priors. Namely, we develop a new increasing shrinkage prior and illustrate how it can be employed to discard redundant dimensions in Gaussian factor models. In order to make it usable for larger datasets, we also investigate variational methods for posterior inference under this proposed prior. Beyond traditional models and parameter spaces, we also provide a different take on dimensionality reduction, focusing on community detection in networks. For this purpose, we define a general class of Bayesian nonparametric priors that encompasses existing stochastic block models as special cases and includes promising unexplored options. Our Bayesian approach allows for a natural incorporation of node attributes and facilitates uncertainty quantification as well as model selection.
Baldiwala, Aliakbar. "Dimensionality Reduction for Commercial Vehicle Fleet Monitoring." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38330.
Full textBolelli, Maria Virginia. "Diffusion Maps for Dimensionality Reduction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18246/.
Full textKhosla, Nitin, and n/a. "Dimensionality Reduction Using Factor Analysis." Griffith University. School of Engineering, 2006. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20061010.151217.
Full textVamulapalli, Harika Rao. "On Dimensionality Reduction of Data." ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1211.
Full textWidemann, David P. "Dimensionality reduction for hyperspectral data." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8448.
Full textThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Khosla, Nitin. "Dimensionality Reduction Using Factor Analysis." Thesis, Griffith University, 2006. http://hdl.handle.net/10072/366058.
Full textThesis (Masters)
Master of Philosophy (MPhil)
School of Engineering
Full Text
Sætrom, Jon. "Reduction of Dimensionality in Spatiotemporal Models." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11247.
Full textGhodsi, Boushehri Ali. "Nonlinear Dimensionality Reduction with Side Information." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/1020.
Full textThis thesis makes a number of contributions. The first is a technique for combining different embedding objectives, which is then exploited to incorporate side information expressed in terms of transformation invariants known to hold in the data. It also introduces two different ways of incorporating transformation invariants in order to make new similarity measures. Two algorithms are proposed which learn metrics based on different types of side information. These learned metrics can then be used in subsequent embedding methods. Finally, it introduces a manifold learning algorithm that is useful when applied to sequential decision problems. In this case we are given action labels in addition to data points. Actions in the manifold learned by this algorithm have meaningful representations in that they are represented as simple transformations.
Books on the topic "Dimensionality reduction"
Lee, John A., and Michel Verleysen, eds. Nonlinear Dimensionality Reduction. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-39351-3.
Full textLespinats, Sylvain, Benoit Colange, and Denys Dutykh. Nonlinear Dimensionality Reduction Techniques. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81026-9.
Full textGarzon, Max, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar, Kalidas Jana, and Lih-Yuan Deng, eds. Dimensionality Reduction in Data Science. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05371-9.
Full textPaul, Arati, and Nabendu Chaki. Dimensionality Reduction of Hyperspectral Imagery. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-42667-4.
Full textStrange, Harry, and Reyer Zwiggelaar. Open Problems in Spectral Dimensionality Reduction. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03943-5.
Full textKramer, Oliver. Dimensionality Reduction with Unsupervised Nearest Neighbors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38652-7.
Full textKramer, Oliver. Dimensionality Reduction with Unsupervised Nearest Neighbors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textShaw, Blake. Graph Embedding and Nonlinear Dimensionality Reduction. [New York, N.Y.?]: [publisher not identified], 2011.
Find full textGhojogh, Benyamin, Mark Crowley, Fakhri Karray, and Ali Ghodsi. Elements of Dimensionality Reduction and Manifold Learning. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-10602-6.
Full textWang, Jianzhong. Geometric Structure of High-Dimensional Data and Dimensionality Reduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-27497-8.
Full textBook chapters on the topic "Dimensionality reduction"
Herrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. "Dimensionality Reduction." In Multilabel Classification, 115–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_7.
Full textKramer, Oliver. "Dimensionality Reduction." In Dimensionality Reduction with Unsupervised Nearest Neighbors, 33–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38652-7_4.
Full textHull, Isaiah. "Dimensionality Reduction." In Machine Learning for Economics and Finance in TensorFlow 2, 281–306. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6373-0_8.
Full textShen, Heng Tao. "Dimensionality Reduction." In Encyclopedia of Database Systems, 1–2. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4899-7993-3_551-2.
Full textWebb, Geoffrey I., Johannes Fürnkranz, Johannes Fürnkranz, Johannes Fürnkranz, Geoffrey Hinton, Claude Sammut, Joerg Sander, et al. "Dimensionality Reduction." In Encyclopedia of Machine Learning, 274–79. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_216.
Full textDinov, Ivo D. "Dimensionality Reduction." In Data Science and Predictive Analytics, 233–66. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72347-1_6.
Full textShen, Heng Tao. "Dimensionality Reduction." In Encyclopedia of Database Systems, 843–46. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-39940-9_551.
Full textMathar, Rudolf, Gholamreza Alirezaei, Emilio Balda, and Arash Behboodi. "Dimensionality Reduction." In Fundamentals of Data Analytics, 45–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56831-3_4.
Full textDurstewitz, Daniel. "Dimensionality Reduction." In Advanced Data Analysis in Neuroscience, 105–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59976-2_6.
Full textBraga-Neto, Ulisses. "Dimensionality Reduction." In Fundamentals of Pattern Recognition and Machine Learning, 205–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27656-0_9.
Full textConference papers on the topic "Dimensionality reduction"
Bunte, Kerstin, Michael Biehl, and Barbara Hammer. "Dimensionality reduction mappings." In 2011 Ieee Symposium On Computational Intelligence And Data Mining - Part Of 17273 - 2011 Ssci. IEEE, 2011. http://dx.doi.org/10.1109/cidm.2011.5949443.
Full textSchclar, Alon, and Amir Averbuch. "Diffusion Bases Dimensionality Reduction." In 7th International Conference on Neural Computation Theory and Applications. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005625301510156.
Full textBingham, Ella, Aristides Gionis, Niina Haiminen, Heli Hiisilä, Heikki Mannila, and Evimaria Terzi. "Segmentation and dimensionality reduction." In Proceedings of the 2006 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2006. http://dx.doi.org/10.1137/1.9781611972764.33.
Full textZhang, Daoqiang, Zhi-Hua Zhou, and Songcan Chen. "Semi-Supervised Dimensionality Reduction." In Proceedings of the 2007 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2007. http://dx.doi.org/10.1137/1.9781611972771.73.
Full textGuo, Ce, and Wayne Luk. "Quantisation-aware Dimensionality Reduction." In 2020 International Conference on Field-Programmable Technology (ICFPT). IEEE, 2020. http://dx.doi.org/10.1109/icfpt51103.2020.00041.
Full textZhu, Xiaofeng, Cong Lei, Hao Yu, Yonggang Li, Jiangzhang Gan, and Shichao Zhang. "Robust Graph Dimensionality Reduction." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/452.
Full textGashler, Mike, and Tony Martinez. "Temporal nonlinear dimensionality reduction." In 2011 International Joint Conference on Neural Networks (IJCNN 2011 - San Jose). IEEE, 2011. http://dx.doi.org/10.1109/ijcnn.2011.6033465.
Full textHeylen, Rob, and Paul Scheunders. "Nonlinear barycentric dimensionality reduction." In 2010 17th IEEE International Conference on Image Processing (ICIP 2010). IEEE, 2010. http://dx.doi.org/10.1109/icip.2010.5653675.
Full textMosci, Sofia, Lorenzo Rosasco, and Alessandro Verri. "Dimensionality reduction and generalization." In the 24th international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1273496.1273579.
Full textLuo, Xianghui, and Robert J. Durrant. "Maximum Gradient Dimensionality Reduction." In 2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018. http://dx.doi.org/10.1109/icpr.2018.8546198.
Full textReports on the topic "Dimensionality reduction"
Jain, Anil K. Classification, Clustering and Dimensionality Reduction. Fort Belvoir, VA: Defense Technical Information Center, July 2008. http://dx.doi.org/10.21236/ada483446.
Full textWolf, Lior, and Stanley Bileschi. Combining Variable Selection with Dimensionality Reduction. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada454990.
Full textJones, Michael J. Using Recurrent Networks for Dimensionality Reduction. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada259497.
Full textLeón, Carlos. Detecting anomalous payments networks: A dimensionality reduction approach. Banco de la República de Colombia, December 2019. http://dx.doi.org/10.32468/be.1098.
Full textSarwar, Badrul, George Karypis, Joseph Konstan, and John Riedl. Application of Dimensionality Reduction in Recommender System - A Case Study. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada439541.
Full textFukumizu, Kenji, Francis R. Bach, and Michael I. Jordan. Dimensionality Reduction for Supervised Learning With Reproducing Kernel Hilbert Spaces. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada446572.
Full textNichols, Jonathan M., Frank Bucholtz, and Joseph V. Michalowicz. Intelligent Data Fusion Using Sparse Representations and Nonlinear Dimensionality Reduction. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada507109.
Full textVales, C., Y. Choi, D. Copeland, and S. Cheung. Energy conserving quadrature based dimensionality reduction for nonlinear hydrodynamics problems. Office of Scientific and Technical Information (OSTI), August 2023. http://dx.doi.org/10.2172/1995059.
Full textHo, Tu Bao. Methods of Sparse Modeling and Dimensionality Reduction to Deal with Big Data. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ada623178.
Full textMohan, Anish, Guillermo Sapiro, and Edward Bosch. Spatially-Coherent Non-Linear Dimensionality Reduction and Segmentation of Hyper-Spectral Images (PREPRINT). Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada478496.
Full text