Academic literature on the topic 'Dimensional Nanostructure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dimensional Nanostructure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dimensional Nanostructure"
Gupta, Vinod Kumar, Njud S. Alharbie, Shilpi Agarwal, and Vladimir A. Grachev. "New Emerging One Dimensional Nanostructure Materials for Gas Sensing Application: A Mini Review." Current Analytical Chemistry 15, no. 2 (February 19, 2019): 131–35. http://dx.doi.org/10.2174/1573411014666180319151407.
Full textTahmasian, Arineh, Ali Morsali, and Sang Woo Joo. "Sonochemical Syntheses of a One-Dimensional Mg(II) Metal-Organic Framework: A New Precursor for Preparation of MgO One-Dimensional Nanostructure." Journal of Nanomaterials 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/313456.
Full textYang, Ming, Xiaohua Chen, Zidong Wang, Yuzhi Zhu, Shiwei Pan, Kaixuan Chen, Yanlin Wang, and Jiaqi Zheng. "Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications." Nanomaterials 11, no. 8 (July 23, 2021): 1895. http://dx.doi.org/10.3390/nano11081895.
Full textWang, Wei, Shirui Guo, Isaac Ruiz, Mihrimah Ozkan, and Cengiz S. Ozkan. "Synthesis of Three Dimensional Carbon Nanostructure Foams for Supercapacitors." MRS Proceedings 1451 (2012): 85–90. http://dx.doi.org/10.1557/opl.2012.1330.
Full textCho, Seong J., Se Yeong Seok, Jin Young Kim, Geunbae Lim, and Hoon Lim. "One-Step Fabrication of Hierarchically Structured Silicon Surfaces and Modification of Their Morphologies Using Sacrificial Layers." Journal of Nanomaterials 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/289256.
Full textVerma, Sneha, and B. M. A. Rahman. "Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array." Sensors 23, no. 3 (January 23, 2023): 1290. http://dx.doi.org/10.3390/s23031290.
Full textDatta, Anuja, Devajyoti Mukherjee, Corisa Kons, Sarath Witanachchi, and Pritish Mukherjee. "Ferroelectricity in Strategically Synthesized Pb-free LiNbO3-type ZnSnO3 Nanostructure Arrayed Thick Films." MRS Proceedings 1729 (2015): 105–10. http://dx.doi.org/10.1557/opl.2015.171.
Full textTatsuoka, Hirokazu, Wen Li, Er Chao Meng, Daisuke Ishikawa, and Kaito Nakane. "Syntheses and Structural Control of Silicide, Oxide and Metallic Nano-Structured Materials." Solid State Phenomena 213 (March 2014): 35–41. http://dx.doi.org/10.4028/www.scientific.net/ssp.213.35.
Full textYoon, Sang-Hyeok, and Kyo-Seon Kim. "Preparation of 1-D Nanostructured Tungsten Oxide Thin Film on Wire Mesh by Flame Vapor Deposition Process." Journal of Nanoscience and Nanotechnology 20, no. 7 (July 1, 2020): 4517–20. http://dx.doi.org/10.1166/jnn.2020.17552.
Full textZhang, Shiying, Huizhao Zhuang, Chengshan Xue, and Baoli Li. "Effect of Annealing on Morphology and Photoluminescence of β-Ga2O3 Nanostructures." Journal of Nanoscience and Nanotechnology 8, no. 7 (July 1, 2008): 3454–57. http://dx.doi.org/10.1166/jnn.2008.138.
Full textDissertations / Theses on the topic "Dimensional Nanostructure"
Fedorenko, Viktoriia. "Atomic layer deposition on three dimensional silicon substrates for optical biosensors applications." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT183/document.
Full textThis thesis manuscript presents the investigations and potential applications as a (bio)sensor platform of the conform thin layers of ZnO and/or Al2O3/ZnO nanolaminates, deposited by atomic layer deposition (ALD) on the various substrates. First, a study of the optical properties of ZnO thin films (20 and 50 nm) deposited by ALD technique on the large areas of ordered silicon nanowires (SiNWs), produced by combining nanosphere lithography and metal-assisted chemical etching, was performed. These methods allowed the morphology and the organization control of SiNWs on a large area. The detailed study of structural and optical properties of core-shell SiNWs/ZnO heterostructure was done by utilizing XRD, SEM, reflectance and photoluminescence spectroscopy, respectively. Integration of SiNWs arrays as core and ZnO as shell can have a strong impact on the development of sensing elements with improved properties. In the further investigations, ZnO films formed by ALD as an optical biosensor platform for the detection of Grapevine virus A-type proteins (GVA-antigens) were represented. The GVA-antigen detection was performed using the changes in the GVA related PL band behavior. The biosensor selectivity has been proved. The possibility to detect GVA-antigens without additional labels has been demonstrated. Thus, label free and sensitive photoluminescence based biosensor for GVA-antigens has been developed. Another part of our study is a specific control of protein anchoring by the development of multifunctional surface with large-scale array of polystyrene spheres (PSS), which produced by nanosphere lithography and further blocking the unspecific adsorption of protein on the surface of the PSS by PEG SAMs. The epifluorescence microscopy was used to confirm that after immersion of sample on target protein (avidin and anti-avidin) solution, the latter are specifically located on polystyrene sphere. These results are meaningful for exploration of devices based on large-scale nanoarray of PS spheres and can be used for detection of target proteins or simply to pattern a surface with specific proteins. Our research also includes the tuning of structural properties and the enhancement of electronic and optical properties of 1D PAN ZnO/Al2O3 nanolaminates designed by atomic layer deposition (ALD) and electrospinning. The structural and optical properties of Al2O3/ ZnO determined from the XPS, TEM, FTIR, XRD and PL analysis. The enhancement of electronic and optical properties would allow application in different fields such sensors and biosensors
Zhou, Zhengzhi. "Synthesis of one-dimensional nanostructure materials." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29703.
Full textCommittee Chair: Deng,Yulin; Committee Member: Hsieh, Jeffery S.; Committee Member: Nair, Sankar; Committee Member: Singh, Preet; Committee Member: Yao, Donggang. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Piccotti, Diego. "Two-Dimensional Nanostructure Arrays for Plasmonic Nanolasers." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423324.
Full textNell'ultima decina di anni, l'interesse per i nanolaser plasmonici è cresciuto siccome sono uno tra i modi più promettenti per la miniaturizzazione dei laser. Infatti, questi dispositivi possono superare il limite di confinamento fisico della luce, grazie alla cavità virtuale data dalle nanostrutture plasmoniche che sostituiscono la convenzionale cavità ottica macroscopica. Inoltre, questi dispositivi plasmonici possono supportare modalità di funzionamento ad alta velocità, bassa soglia di emissione laser e una direzionalità ben definita. Per questa ragione, durante questo progetto, ci siamo concentrati sulla progettazione, la sintesi e la caratterizzazione di nanolasers plasmonici basati su array di nanocupole di oro e array di nanodischi di argento. Al fine di sintetizzare reticoli di nanoparticelle con un ordine elevato, abbiamo utilizzato la Nanosphere Lithography (NSL), una tecnica economica e ad alta produttività basata sull'autoassemblaggio di nanosfere di polistirene. Grazie alla versatilità della NSL, abbiamo sviluppato diversi protocolli di nanofabbricazione, combinando la NSL con i processi di Reactive Ion Etching (RIE) e deposizione fisica da vapore (PVD). Successivamente, abbiamo studiato le proprietà ottiche dei campioni sintetizzati, ricostruendo la struttura a bande ottica lungo le direzioni di alta simmetria dello spazio reciproco. Abbiamo selezionato due adeguati emettitori coloranti, la Pyridine 2 e lo Styryl 9M, al fine di accoppiare la loro emissione con le modalità ottiche dei reticoli nanostrutturati, sulla base delle informazioni della struttura a bande ottica. Inoltre, per ottimizzare le proprietà plasmoniche e l'amplificazione del campo locale delle nanostrutture metalliche, delle simulazioni numeriche sono state effettuate tramite il software COMSOL Multiphysics. L'interazione tra il colorante e la struttura plasmonica ha generato un'emissione amplificata. In particolare, nel reticolo di nanocupole di oro accoppiato alla piridina 2 disciolta in etanolo, un'amplificazione dell'emissione si presenta a720nm con un comportamento a soglia a 0.9 mJ/cm^2 . Inoltre, è stata ottenuta un'emissione direzionale a 17° con una divergenza angolare di 3° che avviene lungo l'anomalia di Rayleigh. Confrontando i risultati dei reticoli di nanocupole di oro con quelli dei reticoli di nanocupole di silice, abbiamo concluso che i modi di reticolo danno un contributo alla direzionalità dell'emissione, mentre i modi plasmonici forniscono una riduzione della soglia laser superando così la perdita di energia. Il reticolo esagonale di nanodischi di argento mostra un comportamento simile a quello con le nanocupole di oro: abbiamo trovato una soglia laser a 1.6 mJ/cm^2 , con anche una simile FWHM. In questo caso, questo fascio è diretto a 65° e presenta una divergenza angolare di circa 14° . Inoltre, abbiamo studiato anche un nanolaser con un mezzo di guadagno a stato solido per l'interesse nelle applicazioni e nell'integrazione di dispositivi su chip. Il colorante laser Styryl 9M è incorporato in un film di PMMA e accoppiato con un reticolo di nanocupole di oro. Questo sistema a stato solido presenta un'emissione amplificata a 795 nm con una soglia di 1.2 mJ/cm^2 e una FWHM di circa 26 nm. Questo campione manifesta anche un'emissione direzionale a 24° con una divergenza angolare di 6° . Ulteriori ricerche hanno dimostrato la possibilità di eliminare il substrato, creando un dispositivo autoportante, che presenta un'emissione amplificata con proprietà simili a quella con il substrato. Infine, per discernere la natura spontanea o stimolata dell'emissione, abbiamo misurato la coerenza del raggio emesso. Tramite un interferometro di Michelson dedicato, la lunghezza di coerenza è stimata a circa 29 um per i reticoli di nanocupole d'oro sopra la soglia. Questo risultato ha dimostrato che è possibile ottenere un'emissione coerente, a bassa soglia e altamente direzionale, accoppiando un colorante fluorescente adeguato con una cavità virtuale opportunamente progettata e realizzata da una reticolo ordinato di nanostrutture plasmoniche.
Cha, S. N. "Nano scale devices based on one dimensional nanostructure." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597380.
Full textLee, Jae Woo. "Electrical characterization and modeling of low dimensional nanostructure FET." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENT070/document.
Full textAt the beginning of this thesis, basic and advanced device fabrication process which I haveexperienced during study such as top-down and bottom-up approach for the nanoscale devicefabrication technique have been described. Especially, lithography technology has beenfocused because it is base of the modern device fabrication. For the advanced device structure,etching technique has been investigated in detail.The characterization of FET has been introduced. For the practical consideration in theadvanced FET, several parameter extraction techniques have been introduced such as Yfunction,split C-V etc.FinFET is one of promising alternatives against conventional planar devices. Problem ofFinFET is surface roughness. During the fabrication, the etching process induces surfaceroughness on the sidewall surfaces. Surface roughness of channel decreases the effectivemobility by surface roughness scattering. With the low temperature measurement andmobility analysis, drain current through sidewall and top surface was separated. From theseparated currents, effective mobilities were extracted in each temperature conditions. Astemperature lowering, mobility behaviors from the transport on each surface have differenttemperature dependence. Especially, in n-type FinFET, the sidewall mobility has strongerdegradation in high gate electric field compare to top surface. Quantification of surfaceroughness was also compared between sidewall and top surface. Low temperaturemeasurement is nondestructive characterization method. Therefore this study can be a propersurface roughness measurement technique for the performance optimization of FinFET.As another quasi-1 D nanowire structure device, 3D stacked SiGe nanowire has beenintroduced. Important of strain engineering has been known for the effective mobility booster.The limitation of dopant diffusion by strain has been shown. Without strain, SiGe nanowireFET showed huge short channel effect. Subthreshold current was bigger than strained SiGechannel. Temperature dependent mobility behavior in short channel unstrained device wascompletely different from the other cases. Impurity scattering was dominant in short channelunstrained SiGe nanowire FET. Thus, it could be concluded that the strain engineering is notnecessary only for the mobility booster but also short channel effect immunity.Junctionless FET is very recently developed device compare to the others. Like as JFET,junctionless FET has volume conduction. Thus, it is less affected by interface states.Junctionless FET also has good short channel effect immunity because off-state ofjunctionless FET is dominated pinch-off of channel depletion. For this, junctionless FETshould have thin body thickness. Therefore, multi gate nanowire structure is proper to makejunctionless FET.Because of the surface area to volume ratio, quasi-1D nanowire structure is good for thesensor application. Nanowire structure has been investigated as a sensor. Using numericalsimulation, generation-recombination noise property was considered in nanowire sensor.Even though the surface area to volume ration is enhanced in the nanowire channel, devicehas sensing limitation by noise. The generation-recombination noise depended on the channelgeometry. As a design tool of nanowire sensor, noise simulation should be carried out toescape from the noise limitation in advance.The basic principles of device simulation have been discussed. Finite difference method andMonte Carlo simulation technique have been introduced for the comprehension of devicesimulation. Practical device simulation data have been shown for examples such as FinFET,strongly disordered 1D channel, OLED and E-paper
Tran, Hoang Anh. "One-Dimensional Nanostructure and Sensing Applications: Tin Dioxide Nanowires and Carbon Nanotubes." PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/2689.
Full textHarfenist, Steven A. "Structure and characterization of passivated inorganic nanocrystals and three dimensional nanocrystal arrays." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/30776.
Full textPatel, Mumukshu D. "Three-Dimensional Carbon Nanostructure and Molybdenum Disulfide (MoS2) for High Performance Electrochemical Energy Storage Devices." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062842/.
Full textZHANG, JIE. "INVESTIGATIONS OF OXIDE AND SULFIDE BASED LOW DIMENSIONAL NANO STRUCTURES FOR CONDUCTOMETRIC GAS SENSORS, MEMRISTORS AND PHOTODETECTORS." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1086.
Full textMcCune, Mallarie DeShea. "Fundamental study of the fabrication of zinc oxide nanowires and its dye-sensitized solar cell applications." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44725.
Full textBooks on the topic "Dimensional Nanostructure"
Ajayi, Obafunso. Optical Studies of Excitonic Effects at Two-Dimensional Nanostructure Interfaces. [New York, N.Y.?]: [publisher not identified], 2017.
Find full textYamada Conference (57th 2001 Tsukuba, Japan). Yamada Conference LVII: Atomic-scale surface designing for functional low-dimensional materials : AIST, Tsukuba, Japan, 14-16 November 2001. Amsterdam: Elsevier, 2002.
Find full textNasar, Ali, ed. Two-dimensional nanostructures. Boca Raton, FL: Taylor & Francis, 2012.
Find full textZhai, Tianyou, and Jiannian Yao, eds. One-Dimensional Nanostructures. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118310342.
Full textWang, Zhiming M., ed. One-Dimensional Nanostructures. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-74132-1.
Full textLi, Zhenyu, and Ce Wang. One-Dimensional nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36427-3.
Full textM, Wang Zhiming, ed. One-dimensional nanostructures. New York: Springer, 2008.
Find full textM, Wang Zhiming, ed. One-dimensional nanostructures. New York: Springer, 2008.
Find full textTorchynska, T. V. Low-dimensional semiconductor structures: Symposium held August 11-15 2013, Cancún, México. Warrendale, Pa: Materials Research Society, 2013.
Find full textLatu-romain, Laurence, and Maelig Ollivier. Silicon Carbide One-Dimensional Nanostructures. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119081470.
Full textBook chapters on the topic "Dimensional Nanostructure"
Kern, D. P. "Nanostructure Fabrication." In Low-Dimensional Electronic Systems, 120–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84857-5_11.
Full textZhang, Zhang, and Stephan Senz. "One-Dimensional Semiconductor Nanostructure Growth with Templates." In One-Dimensional Nanostructures, 1–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118310342.ch1.
Full textKarličić, Danilo, Tony Murmu, Sondipon Adhikari, and Michael McCarthy. "One-Dimensional Double-Nanostructure-Systems." In Non-Local Structural Mechanics, 87–136. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118572030.ch5.
Full textDattoli, Eric N., and Wei Lu. "Hierarchical 3D Nanostructure Organization for Next-Generation Devices." In Three-Dimensional Nanoarchitectures, 205–48. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9822-4_8.
Full textXie, Wei-Guang, Jian-Bin Xu, and Jin An. "Properties and Devices of Single One-Dimensional Nanostructure: Application of Scanning Probe Microscopy." In One-Dimensional Nanostructures, 339–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118310342.ch15.
Full textLatu-Romain, Laurence, and Maelig Ollivier. "SiC-Based One-Dimensional Nanostructure Technologies." In Silicon Carbide One-Dimensional Nanostructures, 87–101. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119081470.ch4.
Full textBerginc, Gérard. "Small-Amplitude Perturbation Theory for Two-Dimensional Surfaces." In Nanostructure Science and Technology, 127–79. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-35659-4_6.
Full textZhang, Jun, and Xianghong Liu. "One-Dimensional Nanowire-Based Heterostructures for Gas Sensors." In Nanostructure Science and Technology, 201–35. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2367-6_7.
Full textAich, Nirupam, Arvid Masud, Tara Sabo-Attwood, Jaime Plazas-Tuttle, and Navid B. Saleh. "Dimensional Variations in Nanohybrids: Property Alterations, Applications, and Considerations for Toxicological Implications." In Nanostructure Science and Technology, 271–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59662-4_9.
Full textChang, Han-Wei, Chi Liang Chen, Sofia Ya Hsuan Liou, and Chung-Li Dong. "X-Ray Spectroscopic Analysis of Electronic Properties of One-Dimensional Nanostructured Materials." In Nanostructure Science and Technology, 1–29. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2367-6_1.
Full textConference papers on the topic "Dimensional Nanostructure"
Yan, Jingshi, Tobias Bucher, Haitao Chen, Khosro Zangeneh Kamali, Emad Najafidehaghani, Antony George, Mohsen Rahmani, et al. "Valley-based directional emission controlled by plasmonic nanostructure." In Low-Dimensional Materials and Devices 2020, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam. SPIE, 2020. http://dx.doi.org/10.1117/12.2568272.
Full textGwak, Yunki, Vinay Narayanunni, Sang-Won Jee, Anastassios A. Mavrokefalos, Michael T. Pettes, Jung-Ho Lee, Li Shi, and Choongho Yu. "Thermal Conductivity of One-Dimensional Silicon-Germanium Alloy Nanowires." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88563.
Full textGuo, Xiaodong, Lei Liu, and Xingyue Zhangyang. "Study on electronic and optical properties of GaN nanostructure arrays." In Low-Dimensional Materials and Devices 2020, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam. SPIE, 2020. http://dx.doi.org/10.1117/12.2572354.
Full textIshikawa, Shinji, and Yoshio Hayasaki. "Size measurement of nanostructure using digital super-resolution interference microscopy." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/dh.2014.dth4b.1.
Full textChang, Chia Ming, Hung-Kuei Tsai, Ming Lun Tseng, Bo Han Chen, Cheng Hung Chu, Hsin Wei Huang, Ding-Wei Huang, Chien-Jang Wu, and Din Ping Tsai. "Three-dimensional light manipulation by plasmonic nanostructure." In SPIE NanoScience + Engineering, edited by Mark I. Stockman. SPIE, 2012. http://dx.doi.org/10.1117/12.930330.
Full textResnick, Alex, Jungkyu Park, Biya Haile, and Eduardo B. Farfán. "Three-Dimensional Printing of Carbon Nanostructures." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11411.
Full textHuang, Jiebin, Peng Han, Chaoxiong Chen, and Guanling Yang. "Multiple channeled filtering in one-dimensional photonic quantum-well and super-lattice structures." In Nanophotonics, Nanostructure, and Nanometrology II. SPIE, 2007. http://dx.doi.org/10.1117/12.757120.
Full textVora, Kevin, SeungYeon Kang, Shobha Shukla, and Eric Mazur. "Three-dimensional silver nanostructure fabrication through multiphoton photoreduction." In SPIE LASE, edited by Alexander Heisterkamp, Michel Meunier, and Stefan Nolte. SPIE, 2012. http://dx.doi.org/10.1117/12.906839.
Full textHarris, Tom, Julio Martinez, Eric Shaner, Brian S. Swartzentruber, Jianyu Huang, John Sullivan, and Gang Chen. "A Platform for Thermal Property Measurements and Transmission Electron Microscopy of Nanostructures." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44508.
Full textOkamoto, Hiromi, Shun Hashiyada, Yoshio Nishiyama, and Tetsuya Narushima. "Imaging Chiral Plasmons." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.5a_a410_1.
Full textReports on the topic "Dimensional Nanostructure"
Han, Hyungkyu. The synthesis of one dimensional nanostructure for energy storage application. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1526934.
Full textTran, Hoang. One-Dimensional Nanostructure and Sensing Applications: Tin Dioxide Nanowires and Carbon Nanotubes. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2685.
Full textLyo, Sungkwun Kenneth, Wei Pan, John Louis Reno, Joel Robert Wendt, and Daniel Lee Barton. LDRD final report on Bloch Oscillations in two-dimensional nanostructure arrays for high frequency applications. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/948689.
Full textO'Connell, R. F. Quantum Transport, Noise and Non-Linear Dissipative Effects in One- and Two-Dimensional Systems and Associated Sub-Micron and Nanostructure Devices. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada250895.
Full textZhu, Yong, Jacob Eapen, and Ayman Hawari. One-Dimensional Nanostructures for Neutron Detection. Office of Scientific and Technical Information (OSTI), May 2015. http://dx.doi.org/10.2172/1179807.
Full textEckhardt, C. J. Two Dimensional Crystals and Nanostructured Materials. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada358135.
Full textBertness, K. A. Dimensional measurement of nanostructures with scanning electron microscopy. Gaithersburg, MD: National Institute of Standards and Technology, September 2017. http://dx.doi.org/10.6028/nist.sp.250-96.
Full textGao, Pu-Xian. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1111426.
Full textHsieh, Timothy H., and Brian M. Wong. Optoelectronic and excitonic properties of oligoacenes and one-dimensional nanostructures. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1002094.
Full textWei, Peng, Chun-Ning Lau, and Marc Bockrath. Spontaneous and Field-Induced Symmetry Breaking in Low Dimensional Nanostructures. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1577865.
Full text