Academic literature on the topic 'Digital flesh'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Digital flesh.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Digital flesh"
Murray, Stuart J. "Digital Flesh." Glimpse 4 (2003): 95–100. http://dx.doi.org/10.5840/glimpse2003418.
Full textRoxanne, Tiara. "Digital territory, digital flesh." A Peer-Reviewed Journal About 8, no. 1 (August 15, 2019): 70–80. http://dx.doi.org/10.7146/aprja.v8i1.115416.
Full textMellier, Denis, and Charles La Via. "The New Digital Flesh of Fantastic Bodies." SubStance 47, no. 3 (2018): 93–112. http://dx.doi.org/10.1353/sub.2018.0034.
Full textFuggle, Sophie. "Pixelated Flesh." Cultural Politics 11, no. 2 (July 1, 2015): 222–33. http://dx.doi.org/10.1215/17432197-2895783.
Full textGrimm, Eckhard, Felix Kuhnke, Anna Gajdt, Jörn Ostermann, and Moritz Knoche. "Accurate Quantification of Anthocyanin in Red Flesh Apples Using Digital Photography and Image Analysis." Horticulturae 8, no. 2 (February 9, 2022): 145. http://dx.doi.org/10.3390/horticulturae8020145.
Full textColletti, Marjan, and Marcos Cruz. "Convoluted Flesh: A Synthetic Approach to Analogue and Digital Architecture." Architectural Design 78, no. 4 (July 2008): 36–43. http://dx.doi.org/10.1002/ad.703.
Full textGiomi, Andrea. "Virtual Embodiment." Chiasmi International 22 (2020): 297–315. http://dx.doi.org/10.5840/chiasmi20202229.
Full textVieira Filho, Paulo Silva. "Floração da Carne/Flowering of the Flesh." Revista Interinstitucional Brasileira de Terapia Ocupacional - REVISBRATO 1, no. 4 (September 25, 2017): 437. http://dx.doi.org/10.47222/2526-3544.rbto12700.
Full textMonti, Alessandro, and Salvatore Maria Aglioti. "Flesh and bone digital sociality: On how humans may go virtual." British Journal of Psychology 109, no. 3 (April 1, 2018): 418–20. http://dx.doi.org/10.1111/bjop.12300.
Full textShimizu, Taku, Kazuma Okada, Shigeki Moriya, Sadao Komori, and Kazuyuki Abe. "A High-throughput Color Measurement System for Evaluating Flesh Browning in Apples." Journal of the American Society for Horticultural Science 146, no. 4 (July 2021): 241–51. http://dx.doi.org/10.21273/jashs05027-20.
Full textDissertations / Theses on the topic "Digital flesh"
Ciacciulli, A. "FRUIT FLESH IN PEACH:CHARACTERIZATION OF THE 'SLOW SOFTENING' TEXTURE." Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/540666.
Full textMajidi, Rabeeh. "DIGITALLY ASSISTED TECHNIQUES FOR NYQUIST RATE ANALOG-to-DIGITAL CONVERTERS." Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-dissertations/275.
Full textPuig, Mailhol Vincent. "Le numérique et l'esprit. Prendre soin des technologies numériques de l'esprit à la lumière de Gilbert Simondon, Maurice Merleau-Ponty, Henri Bergson." Electronic Thesis or Diss., Poitiers, 2023. http://www.theses.fr/2023POIT5001.
Full textThis address to designers stems from an approach of anthropological decentering to think and take care of the digital as spiritual in the sense that Derrida designated the process of questioning but also the of technique in Heidegger. This route goes through a critique of the notion of information in Simondon to try to rethink "the soul of objects". It continues with an analysis of the question of the Flesh from Merleau-Ponty to propose the passage from a "digital suffering flesh" to an organology and a pharmacology of the digital gesture. Finally, it approaches what Bernard Stiegler called the technologies of the through the prism of Bergsonian intuition and Simondonian transduction to reintroduce analogical thought into the digital design of a dispositive benevolence, techno-estheú, cosmotechnic, ethical and political condiú)n for the development of the common good and of knowledge
Seto, Jim Carleton University Dissertation Engineering Electrical. "An 8 bit BiCMOS subranging flash analog to digital converter." Ottawa, 1991.
Find full textHassan, Raza Naqvi Syed. "1 GS/s, Low Power Flash, Analog to Digital Converter in 90nm CMOS Technology." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8382.
Full textThe analog to digital converters is the key components in modern electronic systems. As the digital signal processing industry grows the ADC design becomes more and more challenging for researchers. In these days an ADC becomes a part of the system on chip instead of standalone circuit for data converters. This increases the requirements on ADC design concerning for example speed, power, area, resolution, noise etc. New techniques and methods are going to develop day by day to achieve high performance ADCs.
Of all types of ADCs the flash ADC is not only famous for its data conversion rate but also it becomes the part of other types of ADC for example pipeline and multi bit Sigma Delta ADCs. The main problem with a flash ADC is its power consumption, which increases in number of bits. This thesis presents the comparison of power consumption of different blocks in 1Gbps flash ADCs for 2, 4 and 6 bits in a 90nm CMOS technology. We also investigate the impact on power consumption by changing the design of decoder block.
Sivakumar, Balasubramanian. "A 6-Bit Sub-Ranging High Speed Flash Analog To Digital Converter With Digital Speed And Power Control." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1229631191.
Full textSäll, Erik. "Implementation of Flash Analog-to-Digital Converters in Silicon-on-Insulator Technology." Licentiate thesis, Linköping University, Linköping University, Electronics System, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5260.
Full textHigh speed analog-to-digital converters (ADCs) used in, e.g., read channel and ultra wideband (UWB) applications are often based on a flash topology. The read channel applications is the intended application of this work, where a part of the work covers the design of two different types of 6-bit flash ADCs. Another field of application is UWB receivers.
To optimize the performance of the whole system and derive the specifications for the sub-blocks of the system it is often desired to use a topdown design methodology. To facilitate the top-down design methodology the ADCs are modeled on behavioral level. The models are simulated in MATLAB®. The results are used to verify the functionality of the proposed circuit topologies and serve as a base to the circuit design phase.
The first flash ADC has a conventional topology. It has a resistor net connected to a number of latched comparators, but its thermometer-tobinary encoder is based on 2-to-1 multiplexers buffered with inverters. This gives a compact encoder with a regular structure and short critical path. The main disadvantage is the code dependent timing difference between the encoder outputs introduced by this topology. The ADC was simulated on schematic level in Cadence® using the foundry provided transistor models. The design obtained a maximum sampling frequency of 1 GHz, an effective resolution bandwidth of 390 MHz, and a power consumption of 170 mW.
The purpose of the second ADC is to demonstrate the concept of introducing dynamic element matching (DEM) into the reference net of a flash ADC. This design yields information about the performance improvements the DEM gives, and what the trade-offs are when introducing DEM. Behavioral level simulations indicate that the SFDR is improved by 11 dB when introducing DEM, but the settling time of the reference net with DEM will now limit the conversion speed of the converter. Further, the maximum input frequency is limited by the total resistance in the reference net, which gets increased in this topology. The total resistance is the total switch on-resistance plus the total resistance of the resistors. To increase the conversion speed and the maximum input frequency a new DEM topology is proposed in this work, which reduces the number of switches introduced into the reference net compared with earlier proposed DEM topologies. The transistor level simulations in Cadence® of the flash ADC with DEM indicates that the SFDR improves by 6 dB compared with when not using DEM, and is expected to improve more if more samples are used in the simulation. This was not possible in the current simulations due to the long simulation time. The improved SFDR is however traded for an increased chip area and a reduction of the maximum sampling frequency to 550 MHzfor this converter. The average power consumption is 92 mW.
A goal of this work is to evaluate a 130 nm partially depleted silicon-oninsulator (SOI) complementary metal oxide semiconductor (CMOS) technology with respect to analog circuit implementation. The converters are therefore implemented in this technology. When writing this the ADCs are still being manufactured. Since the technology evaluation will be based on the measurement results the final results of the evaluation are not included in this thesis. The conclusions regarding the SOI CMOS technology are therefore based on a literature study of published scientific papers in the SOI area, information extracted during the design phase of the ADCs, and from the transistor level circuit simulations. These inputs indicate that to fully utilize the potential performance advantages of the SOI CMOS technology the partially depleted SOI CMOS technology should be exchanged for a fully depleted SOI CMOS technology. The manufacturing difficulties regarding the control of the thin-film thickness must however first be solved before the exchange can be done.
Report code: LiU-Tek-Lic-2005:68.
Cicalo, James. "An embedded calibration technique for high-resolution flash time-to-digital converters." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31637.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Säll, Erik. "Implementation of flash analog-to-digital converters in silicon-on-insulator technology /." Linköping : Linköpings universitet, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5260.
Full textGuerrero, Maximiliano. "“3-1, shut your flash” : How shooter games convey agency." Thesis, Karlstads universitet, Institutionen för geografi, medier och kommunikation (from 2013), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-80328.
Full textBooks on the topic "Digital flesh"
Greenleaf, Stephen. Flesh wounds. New York: Pocket Books, 1996.
Find full textGreenleaf, Stephen. Flesh wounds. New York: Scribner, 1996.
Find full textGreenleaf, Stephen. Flesh wounds: The daring new John Marshall Tanner novel. New York: Scribner, 1996.
Find full textGerantabee, Fred. Flash CS4 Professional Digital Classroom. Hoboken: John Wiley & Sons, Inc., 2011.
Find full textTeam, AGI Creative, ed. Adobe Flash Professional CS5 digital classroom. Indianapolis, IN: Wiley, 2010.
Find full textBob, Keenan, and Ostrowski Steve, eds. Speedlights & speedlites: Creative flash photography at lightspeed. Amsterdam: Focal Press/Elsevier, 2009.
Find full text1955-, Ozer Jan, ed. Hands-on guide to Flash video: Web video and Flash media server. Amsterdam: Focal Press, 2007.
Find full textDennis, Thomas J., ed. Nikon creative lighting system digital field guide. 3rd ed. Indianapolis, IN: Wiley Pub., 2012.
Find full textDeutschmann, Rod. Off-camera flash: Creative techniques for digital photographers. Buffalo, NY: Amherst, 2010.
Find full textJ, Parrott Clifford, ed. Hollywood 2D digital animation: The new Flash production revolution. Boston, Mass: Thomson Course Technology, 2004.
Find full textBook chapters on the topic "Digital flesh"
Hermawati, Setia, and Russell Marshall. "Realistic Elbow Flesh Deformation Based on Anthropometrical Data for Ergonomics Modeling." In Digital Human Modeling, 632–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02809-0_67.
Full textPelgrom, Marcel J. M. "Flash Analog-to-Digital Conversion." In Analog-to-Digital Conversion, 643–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90808-9_13.
Full textAnsari and Naushad Alam. "TFET-Based Flash Analog-to-Digital Converter." In Emerging Low-Power Semiconductor Devices, 223–53. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003240778-11.
Full textKlose, U., G. Schroth, G. Varallyay, J. Gawehn, and D. Petersen. "Kernspintomographische Analyse von Pulsationen mit getriggerten FLASH-Sequenzen." In Digitale bildgebende Verfahren Interventionelle Verfahren Integrierte digitale Radiologie, 402–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73134-1_71.
Full textMatthaei, D., and A. Haase. "Weiterentwicklungen der Kernspintomographie auf der Grundlage der FLASH-MR-Sequenz." In Digitale bildgebende Verfahren Interventionelle Verfahren Integrierte digitale Radiologie, 643–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73134-1_110.
Full textCoughlin, Thomas M. "Fundamentals of Flash Memory and Other Solid-State Memory Technologies." In Digital Storage in Consumer Electronics, 61–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69907-3_4.
Full textMeng, Xiangzeng, and Lei Liu. "On Retrieval of Flash Animations Based on Visual Features." In Technologies for E-Learning and Digital Entertainment, 270–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69736-7_29.
Full textAl-Mamari, Mahmood M., Sameh A. Kantoush, and Tetsuya Sumi. "Innovative Monitoring Techniques for Wadi Flash Flood by Using Image-Based Analysis." In Natural Disaster Science and Mitigation Engineering: DPRI reports, 251–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2904-4_9.
Full textGuo, Feng, Qin Mei, and Da Li. "Design of Digital-Analog Control Algorithm for Flash Smelting Metallurgy." In Advances in Intelligent Systems and Computing, 25–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-33-4572-0_4.
Full textSvendsen, Mette N., Mie S. Dam, Laura E. Navne, and Iben M. Gjødsbøl. "Moral Ambiguities: Fleshy and Digital Substitutes in the Life Sciences." In The Palgrave Handbook of the Anthropology of Technology, 529–46. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7084-8_27.
Full textConference papers on the topic "Digital flesh"
Comer, Sean, Jacob Buck, and Brice Criswell. "Under the scalpel - ILM's digital flesh workflows." In SIGGRAPH '15: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2775280.2792584.
Full textHermawati, Setia, and Russell Marshall. "Realistic Flesh Deformation for Digital Humans in Ergonomics Modeling." In Digital Human Modeling for Design and Engineering Symposium. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008. http://dx.doi.org/10.4271/2008-01-1884.
Full textPrusten, Mark J., and Arthur F. Gmitro. "An Optical Flash Analog to Digital Converter." In Optical Computing. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/optcomp.1995.otue3.
Full textPetschnigg, Georg, Richard Szeliski, Maneesh Agrawala, Michael Cohen, Hugues Hoppe, and Kentaro Toyama. "Digital photography with flash and no-flash image pairs." In ACM SIGGRAPH 2004 Papers. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1186562.1015777.
Full textFernandes, Luiza Cintra Fernandes, and Arcilan T. Assireu. "TÉCNICAS DE RECONHECIMENTO DE PADRÃO APLICADO A MODELO DIGITAL DE TERRENO E INFLUÊNCIAS PARA O ESCOAMENTO DO VENTO." In IX SBEA + XV ENEEAmb + III FLES. São Paulo: Editora Blucher, 2017. http://dx.doi.org/10.5151/xveneeamb-193.
Full textYamamoto, Yoshitaka. "Flash photography by digital still camera." In 24th International Congress on High-Speed Photography and Photonics, edited by Kazuyoshi Takayama, Tsutomo Saito, Harald Kleine, and Eugene V. Timofeev. SPIE, 2001. http://dx.doi.org/10.1117/12.424272.
Full textGrantham, S. G. "Digital Speckle X-Ray Flash Photography." In Shock Compression of Condensed Matter - 2001: 12th APS Topical Conference. AIP, 2002. http://dx.doi.org/10.1063/1.1483659.
Full textSnehalatha, G., and M. Anjikumar. "Stochastic Flash Analog to Digital Converter Compared with Conventional Resistor ladder Flash Analog to Digital Converter." In 2022 International Conference on Futuristic Technologies (INCOFT). IEEE, 2022. http://dx.doi.org/10.1109/incoft55651.2022.10094440.
Full textChen, Peng, and Robert Bogdan Staszewski. "Exponential extended flash time-to-digital converter." In 2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP). IEEE, 2016. http://dx.doi.org/10.1109/ebccsp.2016.7605281.
Full textChia-Nan Yeh and Yen-Tai Lai. "A novel flash analog-to-digital converter." In 2008 IEEE International Symposium on Circuits and Systems - ISCAS 2008. IEEE, 2008. http://dx.doi.org/10.1109/iscas.2008.4541901.
Full text