Academic literature on the topic 'Digital audio effects'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Digital audio effects.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Digital audio effects"

1

Zölzer, Udo, and Julius O. Smith III. "DAFX—Digital Audio Effects." Journal of the Acoustical Society of America 114, no. 5 (2003): 2527. http://dx.doi.org/10.1121/1.1616923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Välimäki, Vesa, and Federico Fontana. "Special Issue on Digital Audio Effects." Applied Sciences 10, no. 7 (April 3, 2020): 2449. http://dx.doi.org/10.3390/app10072449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arfib, Daniel. "Musical Implications of Digital Audio Effects." Journal of New Music Research 31, no. 2 (June 1, 2002): 85–86. http://dx.doi.org/10.1076/jnmr.31.2.85.8095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bernardini, Nicola, and J�ran Rudi. "Compositional Use of Digital Audio Effects." Journal of New Music Research 31, no. 2 (June 1, 2002): 87–91. http://dx.doi.org/10.1076/jnmr.31.2.87.8094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rocchesso, Davide, and Jøran Rudi. "Digital Audio Effects 1998, Barcelona, Spain." Computer Music Journal 23, no. 2 (June 1999): 86–87. http://dx.doi.org/10.1162/comj.1999.23.2.86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Risset, Jean-Claude. "Examples of the Musical Use of Digital Audio Effects." Journal of New Music Research 31, no. 2 (June 1, 2002): 93–97. http://dx.doi.org/10.1076/jnmr.31.2.93.8092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khatavkar, Karan. "Enhancing Speech Signal Quality through Noise Reduction for Improved Communication." International Journal for Research in Applied Science and Engineering Technology 11, no. 9 (September 30, 2023): 1761–68. http://dx.doi.org/10.22214/ijraset.2023.55925.

Full text
Abstract:
Abstract: Speech is a fundamental and reliable mode of human communication, conveying not only linguistic content but also essential cues about the speaker, including language, emotion, gender, and identity. However, in contemporary telephone and audio-based communication systems, speech signals are highly susceptible to the deleterious effects of ambient and Gaussian noise. To detach this noise from the signal, many Digital Audio Filters can be employed, including the Audio Weighting Filter, low-pass and High-pass filter, Band Pass Filter, and Band Stop Filter. This paper implements and compares various digital filters for audio signal enhancement using MATLAB Simulink and compares the outcome to identify the best filter for this specific purpose.
APA, Harvard, Vancouver, ISO, and other styles
8

Verfaille, Vincent, Marcelo M. Wanderley, and Philippe Depalle. "Mapping strategies for gestural and adaptive control of digital audio effects." Journal of New Music Research 35, no. 1 (March 2006): 71–93. http://dx.doi.org/10.1080/09298210600696881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martínez Ramírez, Marco A., Emmanouil Benetos, and Joshua D. Reiss. "Deep Learning for Black-Box Modeling of Audio Effects." Applied Sciences 10, no. 2 (January 16, 2020): 638. http://dx.doi.org/10.3390/app10020638.

Full text
Abstract:
Virtual analog modeling of audio effects consists of emulating the sound of an audio processor reference device. This digital simulation is normally done by designing mathematical models of these systems. It is often difficult because it seeks to accurately model all components within the effect unit, which usually contains various nonlinearities and time-varying components. Most existing methods for audio effects modeling are either simplified or optimized to a very specific circuit or type of audio effect and cannot be efficiently translated to other types of audio effects. Recently, deep neural networks have been explored as black-box modeling strategies to solve this task, i.e., by using only input–output measurements. We analyse different state-of-the-art deep learning models based on convolutional and recurrent neural networks, feedforward WaveNet architectures and we also introduce a new model based on the combination of the aforementioned models. Through objective perceptual-based metrics and subjective listening tests we explore the performance of these models when modeling various analog audio effects. Thus, we show virtual analog models of nonlinear effects, such as a tube preamplifier; nonlinear effects with memory, such as a transistor-based limiter and nonlinear time-varying effects, such as the rotating horn and rotating woofer of a Leslie speaker cabinet.
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Yutong. "Analysis Of Different Types of Digital Audio Workstations." Highlights in Science, Engineering and Technology 85 (March 13, 2024): 563–69. http://dx.doi.org/10.54097/6vvy8z41.

Full text
Abstract:
With the development of technology, digital audio workstation (DAW) has become a must-have tool for modern music production, which allows music producers to edit, record, mix and add effects on the computer to create music works of various styles and qualities. This paper mainly introduces the definition, purpose, function, type and development of DAW, and how to choose the appropriate DAW according to individual needs. This article compares and analyzes three commonly used DAWs (Apple Logic Pro X, Cubase 12, Ableton Live Lite 11) from the aspects of personal budget, user experience, software operating system compatibility, long-term development, and whether live performances are needed. Their advantages, disadvantages and application range are pointed out. This paper also points out some limitations of DAW, (e.g., the requirements of hardware and software conditions, the difficulty of learning and mastering, the problems of music creation), and looks forward to the future development direction of DAW (the improvement of user experience and personalization, the utilization of cloud computing and artificial intelligence, and the integration of other fields and media). These results can help independent music producers to understand the basic situation and selection criteria of DAW, so as to better use DAW to create and express their own music ideas, and provide some reference and inspiration for further improvement and innovation of DAW.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Digital audio effects"

1

Janiszewski, Marcin Józef. "Audio effects unit." Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/6237.

Full text
Abstract:
Mestrado em Engenharia Electrónica e Telecomunicações
O objectivo principal da presente tese de mestrado centrou-se no desenho e construção de uma unidade de efeitos de áudio (Audio Effects Unit -AEU), cuja função consiste em processar sinais áudio em tempo real. O propósito central foi desenvolver uma unidade de processamento áudio genérica, cuja função de processamento, implementada no domínio digital, pode ser facilmente especificada pelo utilizador via uma aplicação de software implementada num computador. A primeira etapa deste projecto consistiu na implementação completa do hardware que constitui o AEU. É importante acrescentar que esta concepção teve em conta a inclusão desse hardware numa caixa apropriada. Este método de projecto e implementação constituiu uma experiência muito interessante e útil. A próxima etapa consistiu no desenvolvimento de algoritmos matemáticos a ser implementados no microcontrolador do AEU e que geram os efeitos sonoros desejados por processamento dos sinais áudio originais. Estes algoritmos foram inicialmente testados através do Matlab. Para controlar os efeitos sonoros produzidos foi ainda criada uma aplicação de computador que permite a intervenção, de forma muito simples, do utilizador. A referida aplicação assegura a comunicação entre o microcontrolador do AEU e o computador através de uma ligação USB. O dispositivo, na sua versão final, foi testado em laboratório e através do Matlab. Cada bloco do dispositivo, e o dispositivo completo, foi testado individualmente. Com base nessa avaliação foram desenhadas as respectivas características na frequência e analisada a qualidade do dispositivo de áudio. Para além da experiência adquirida em concepção de hardware, este projecto permitiu-me alargar o meu conhecimento em programação de microcontroladores e na optimização de código, um requisito do processamento de sinal em tempo real. Também me deu a oportunidade de utilizar a ferramenta comercial MPLAB para programação de microcontroladores.
The main aim of this master thesis was to design and build an Audio Effects Unit (AEU), whose function is to process, a particular audio signal in real time. The objective was to develop a general purpose audio processing unit where the processing function, implemented in the digital domain, can be easily specified by the user by means of a software application running on a computer. The first stage of this project consisted on the full design and implementation of the hardware that constitutes the AEU. It is worth adding that such design also considered that the layout could be placed in an enclosure. Such way of designing was a great new experience. The next stage was to prepare the mathematical algorithms to be implemented in the AEU microcontroller which create the sound effects by processing the original audio signal. These algorithms were first tested in MatLab. To control the produced sound effects a computer program was created which allows the user intervention in a straightforward way. This program ensures communication between the AEU microcontroller and PC software using an USB connection. The completed device was tested in laboratory and with Matlab. The individual blocks of the AEU, and the whole device, were tested. On the basis of these tests frequency characteristics were drawn and the quality of the audio device was analyzed. Besides acquiring expertise in hardware design, this project has broadened my knowledge on microcontroller programming and code optimization, a requirement for real time signal processing. It also gave me the opportunity to use the commercial MPLAB programming environment.
Głównym celem tej pracy magisterskiej było zaprojektowanie i zbudowanie układu do generowania efektów dźwiękowych (Audio Effects Unit - AEU) służącego do przetwarzania sygnału dźwiękowego w czasie rzeczywistym. Zadaniem autora było skonstruowanie ogólnego zastosowania układu przetwarzającego sygnał dźwiękowy, w którym funkcja przetwarzania, zaimplementowana w sposób cyfrowy, może być łatwo określona przez użytkownika poprzez zastosowanie odpowiedniego oprogramowania komputerowego. Pierwszy etap projektu polegał na szczegółowym zaprojektowaniu i zbudowaniu warstwy sprzętowej tworzącej AEU. W projekcie przewidziano tez możliwość umieszczenia układu w obudowie, co było dla autora nowym doświadczeniem projektowym. Kolejnym etapem było opracowanie algorytmów matematycznych, zaimplementowanych w mikrokontrolerze AEU, które tworzą efekty dźwiękowe poprzez przetwarzanie oryginalnego sygnału dźwiękowego. Te algorytmy zostały najpierw przetestowane w programie MatLab. Do kontrolowania wytworzonych efektów dźwiękowych, został napisany program komputerowy, który pozwala na prostą interakcje z użytkownikiem. Ten program zapewnia komunikację między mikrokontrolerem AEU i oprogramowaniem komputerowym poprzez złącze USB. Gotowe urządzenie zostało zbadane w laboratorium oraz za pomocą programu Matlab. Poszczególne bloki AEU jak i całe urządzenie zostały przetestowane, co pozwoliło na wykreślenie charakterystyk częstotliwościowych i umożliwiło analizę jakości wykonanego urządzenia audio. Oprócz zdobywania doświadczenia w projektowaniu sprzętu, udział w projekcie poszerzył moją wiedzę o programowaniu mikrokontrolerów i optymalizacji kodu, potrzebną dla przetwarzania sygnału w czasie rzeczywistym. Ponadto miałem możliwość zapoznania się z komercyjnym środowiskiem programistycznym MPLAB.
APA, Harvard, Vancouver, ISO, and other styles
2

Molina, Villota Daniel Hernán. "Vocal audio effects : tuning, vocoders, interaction." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS166.

Full text
Abstract:
Cette recherche se concentre sur l'utilisation d'effets audio numériques (DAFx) sur les pistes vocales dans la musique moderne, on étudie principalement la correction de la hauteur et le vocoding. Malgré son utilisation répandue, il n'y a pas eu suffisamment de discussions sur la manière d'améliorer l'autotune ou sur ce qui rend une modification de la hauteur plus intéressante d'un point de vue musical. Une analyse taxonomique des effets vocaux a été réalisée, montrant des exemples de la manière dont les effets peuvent préserver ou transformer l'identité vocale et leur utilisation musicale, en particulier traitant la modification de la hauteur. En outre, un recueil de termes technico-musicaux a été élaboré pour distinguer les types de tuning vocal et les cas de correction de la hauteur. Une méthode de correction de la hauteur est proposée pour son utilisation vocale : Dynamic Pitch Warping (DPW). Cette méthode est validée par des courbes de hauteur théoriques (appuyées par l'audio) et comparée à une méthode de référence. Bien que le vocodeur soit essentiel pour la correction de la hauteur, il y a un manque de base descriptive et comparative pour les techniques de vocodeur. Par conséquent, une description sonore du vocodeur est proposée, compte tenu de son utilisation pour le tuning, en utilisant quatre algorithmes différents : Antares, Retune, World et Circe. Ensuite, une évaluation psychoacoustique subjective est réalisée pour comparer les quatre systèmes dans les cas suivants : resynthèse de la tonalité originale, correction vocale douce et correction vocale extrême. Cette évaluation psychoacoustique cherche à comprendre la coloration de chaque vocodeur (préservation de l'identité vocale) et dans la correction vocale extrême. Aussi, un protocole d'évaluation subjective des méthodes de correction de la hauteur est proposé et mis en œuvre. Ce protocole compare notre méthode de correction de hauteur DPW à la méthode de référence ATA. Cette étude vise à déterminer s'il existe des différences perceptives entre les systèmes et dans quels cas elles se produisent, ce qui est utile pour développer de nouvelles méthodes de modification mélodique à l'avenir. Enfin, l'utilisation interactive des effets vocaux a été explorée, en capturant le mouvement des mains à l'aide de capteurs sans fil et en le mappant pour contrôler les effets qui modifient la perception de l'espace et de la mélodie vocale
This research focuses on the use of digital audio effects (DAFx) on vocal tracks in modern music, mainly pitch correction and vocoding. Despite its widespread use, there has not been enough discussion on how to improve autotune or what makes a pitch-modification more musically interesting. A taxonomic analysis of vocal effects has been conducted, demonstrating examples of how they can preserve or transform vocal identity and their musical use, particularly with pitch modification. Furthermore, a compendium of technical-musical terms has been developed to distinguish types of vocal tuning and cases of pitch correction. Additionally, a graphical correction method for vocal pitch correction is proposed. This method is validated with theoretical pitch curves (supported by audio) and compared with a reference method. Although the vocoder is essential for pitch correction, there is a lack of descriptive and comparative basis for vocoding techniques. Therefore, a sonic description of the vocoder is proposed, given its use for tuning, employing four different techniques: Antares, Retune, World, and Circe. Subsequently, a subjective psychoacoustic evaluation is conducted to compare the four systems in the following cases: original tone resynthesis, soft vocal correction, and extreme vocal correction. This psychoacoustic evaluation seeks to understand the coloring of each vocoder (preservation of vocal identity) and the role of melody in extreme vocal correction. Furthermore, a protocol for the subjective evaluation of pitch correction methods is proposed and implemented. This protocol compares our DPW pitch correction method with the ATA reference method. This study aims to determine if there are perceptual differences between the systems and in which cases they occur, which is useful for developing new melodic modification methods in the future. Finally, the interactive use of vocal effects has been explored, capturing hand movement with wireless sensors and mapping it to control effects that modify the perception of space and vocal melody
APA, Harvard, Vancouver, ISO, and other styles
3

Patel, Dipankumar Dalubhai. "Subjective effects of cell loss and bit error on compressed audio-visual applications over ATM." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Xiangui. "Effects of digital audio quality on students' performance in LAN delivered English listening comprehension tests." Ohio : Ohio University, 2009. http://www.ohiolink.edu/etd/view.cgi?ohiou1236796324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stutzman, Krista. "The effects of digital audio files and online discussions on student proficiency in a foreign language." [Ames, Iowa : Iowa State University], 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Clark, Robin John. "Investigation into digital audio equaliser systems and the effects of arithmetic and transform errors on performance." Thesis, University of Plymouth, 2001. http://hdl.handle.net/10026.1/2685.

Full text
Abstract:
Discrete-time audio equalisers introduce a variety of undesirable artefacts into audio mixing systems, namely, distortions caused by finite wordlength constraints, frequency response distortion due to coefficient calculation and signal disturbances that arise from real-time coefficient update. An understanding of these artefacts is important in the design of computationally affordable, good quality equalisers. A detailed investigation into these artefacts using various forms of arithmetic, filter frequency response, input excitation and sampling frequencies is described in this thesis. Novel coefficient calculation techniques, based on the matched z-transform (MZT) were developed to minimise filter response distortion and computation for on-line implementation. It was found that MZT-based filter responses can approximate more closely to s-plane filters, than BZTbased filters, with an affordable increase in computation load. Frequency response distortions and prewarping/correction schemes at higher sampling frequencies (96 and 192 kHz) were also assessed. An environment for emulating fractional quantisation in fixed and floating point arithmetic was developed. Various key filter topologies were emulated in fixed and floating point arithmetic using various input stimuli and frequency responses. The work provides detailed objective information and an understanding of the behaviour of key topologies in fixed and floating point arithmetic and the effects of input excitation and sampling frequency. Signal disturbance behaviour in key filter topologies during coefficient update was investigated through the implementation of various coefficient update scenarios. Input stimuli and specific frequency response changes that produce worst-case disturbances were identified, providing an analytical understanding of disturbance behaviour in various topologies. Existing parameter and coefficient interpolation algorithms were implemented and assessed under fihite wordlength arithmetic. The disturbance behaviour of various topologies at higher sampling frequencies was examined. The work contributes to the understanding of artefacts in audio equaliser implementation. The study of artefacts at the sampling frequencies of 48,96 and 192 kHz has implications in the assessment of equaliser performance at higher sampling frequencies.
APA, Harvard, Vancouver, ISO, and other styles
7

Deming, Robert Livingston. "Digital audio : exploring the thinking, products, effects and impact of using sound on the elementary classroom computer /." Access Digital Full Text version, 1996. http://pocketknowledge.tc.columbia.edu/home.php/bybib/11974564.

Full text
Abstract:
Thesis (Ed.D.)--Teachers College, Columbia University, 1996.
Typescript; issued also on microfilm. Sponsor: A. Lin Goodwin. Dissertation Committee: Robert O. McClintock. Includes bibliographical references (leaves 246-257).
APA, Harvard, Vancouver, ISO, and other styles
8

Savvateev, Anton. "Which compound-earcon's attributes may improve a player's performance in a search-oriented gameplay: rhythm vs timbre?" Thesis, Luleå tekniska universitet, Medier ljudteknik och upplevelseproduktion och teater, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69003.

Full text
Abstract:
Earcons are commonly used by sound designers in order to support visual cues in a game andto make a gaming experience more enjoyable. This study covers two earcons’ attributes: rhythm and timbre. Rhythm and timbre attributes were chosen according to the earcon sounddesign guidelines from the previous studies. An experiment in a form of a video game was conducted in order to research whether one of the conditions can increase a players’performance. A subject had to choose the correct key to the door in order to go to the next location. There were 3 different locations and there were totally 5 different own-designed earcons: 1 incorrect earcon in the both conditions and 2 different correct earcons in each condition. 20 subjects with various gaming experience from the Luleå University of Technology participated in the experiment. The subjects were randomly divided into two groups with different conditions: rhythm and timbre. The amount of wrong trials and completion time were analyzed for each condition and the results were given with the help of Mann-Whitney U-test and t-test calculations. The results of U-test showed that there was a significant difference between two groups in terms of the wrong trials amount. Group with rhythm condition showed better performance in terms of the wrong trials amount. The t-test showed a significant difference between the two groups in terms of completion time. Group with timbre condition showed better timing performance, although considering the analysis it did not increase their performance in terms of making correct choices. Further research might be recommended on comparing various earcon attributes in different ecologically valid scenarios.
APA, Harvard, Vancouver, ISO, and other styles
9

Frenštátský, Petr. "Softwarový analyzátor zvukových efektů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220634.

Full text
Abstract:
The utilisation of personal computers for a conditioning of audio devices has shown a significant increase, since the digital signal processing (DSP) was introduced. The expansion of the DSP has allowed implementing analyses to obtain frequency and linear characteristics, distortion parameters (THD, THD+N, WHD, SINAD), a rate of crosstalk or a signal-to-noise ratio. In this work a software analyser is developed, which is able to obtain qualitative parameters of hardware audio devices that are connected with a sound card. For an efficient communication between the sound card and the personal computer the ASIO driver is used. The application is capable to measure audio effects that are implemented in VST plug-ins. The software is developed in C++ language and the implemented analyses are based on the AES17 recommendation.
APA, Harvard, Vancouver, ISO, and other styles
10

Karlström, Therése, and Alexandra Kantonenko. "The effect of Digital Tools on Auditors' Professional Scepticism : A Quantitative Study of Professional Scepticism in the Swedish Audit Profession." Thesis, Internationella Handelshögskolan, Jönköping University, IHH, Företagsekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-48618.

Full text
Abstract:
Purpose: The purpose of this study is to investigate and analyze whether the relationship between structural domains represented by CAATs and judgment represented by professional scepticism is related to auditors’ individual characteristics, trait scepticism. Methodology: This study is based on a quantitative method in the form of a questionnaire sent to all Swedish authorized auditors. The response rate was 16.8 per cent. The responses were analyzed by Spearman correlation matrix, principal component analysis, multiple linear regression analysis, and hierarchical moderated multiple regression analysis. Moreover, this thesis is based on a positivistic perspective to get a general picture of professional scepticism. A deductive approach, going from theory to empirics, has been implemented. Findings: The results showed a positive relationship between judgment represented by professional scepticism and structure represented by CAATs, where auditors’ individual characteristics, trait scepticism, have a positive moderating effect on the relationship. Theoretical perspectives: We apply the profession theory, comfort theory and structure and judgment at Swedish authorized auditors with diverse experience.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Digital audio effects"

1

Zölzer, Udo, ed. DAFX: Digital Audio Effects. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Udo, Zölzer, and Amatriain Xavier, eds. DAFX: Digital audio effects. Chichester: Wiley, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

COST-G6 Workshop on Digital Audio Effects (1st 1998 Barcelona). Proceedings 98 Digital Audio Effects Workshop: Barcelona, November 19-21, 1998. Barcelona: Audiovisual Institute, Pompeu Fabra University, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dylan, Jones. iPod, therefore I am: Thinking inside the white box. New York, NY: Bloomsbury, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dylan, Jones. iPod, therefore I am. London: Weidenfeld & Nicolson, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dave, Raybould, ed. The game audio tutorial: A practical guide to sound and music for interactive games. Amsterdam: Boston, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Steve, Albanese, ed. Pro Tools 7 power!: The comprehensive guide. 2nd ed. Boston, MA: Thomson Course Technology, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ozer, Jan. Adobe digital video how-tos: 100 essential techniques with Adobe production studio. Berkeley, CA: Peachpit, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jenny, Bartlett, ed. Practical recording techniques: The step-by-step approach to professional audio recording. 4th ed. Burlington, Mass: Focal, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

M, Rubin David. The audible Macintosh. San Francisco: SYBEX, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Digital audio effects"

1

Uncini, Aurelio. "Digital Audio Effects." In Springer Topics in Signal Processing, 483–563. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14228-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Verfaille, V., D. Arfib, F. Keiler, A. von dem Knesebeck, and U. Zölzer. "Adaptive Digital Audio Effects." In DAFX: Digital Audio Effects, 321–91. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991298.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pulkki, V., T. Lokki, and D. Rocchesso. "Spatial Effects." In DAFX: Digital Audio Effects, 139–83. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991298.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Välimäki, V., S. Bilbao, J. O. Smith, J. S. Abel, J. Pakarinen, and D. Berners. "Virtual Analog Effects." In DAFX: Digital Audio Effects, 473–522. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991298.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Verfaille, V., M. Holters, and U. Zölzer. "Introduction." In DAFX: Digital Audio Effects, 1–46. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991298.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bonada, J., X. Serra, X. Amatriain, and A. Loscos. "Spectral Processing." In DAFX: Digital Audio Effects, 393–445. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991298.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Evangelista, G. "Time and Frequency-Warping Musical Signals." In DAFX: Digital Audio Effects, 447–71. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991298.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Perez-Gonzalez, E., and J. D. Reiss. "Automatic Mixing." In DAFX: Digital Audio Effects, 523–49. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991298.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Evangelista, G., S. Marchand, M. D. Plumbley, and E. Vincent. "Sound Source Separation." In DAFX: Digital Audio Effects, 551–88. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991298.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dutilleux, P., M. Holters, S. Disch, and U. Zölzer. "Filters and Delays." In DAFX: Digital Audio Effects, 47–81. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991298.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Digital audio effects"

1

Zolzer, Udo. "Pitch-based digital audio effects." In 2012 5th International Symposium on Communications, Control and Signal Processing (ISCCSP). IEEE, 2012. http://dx.doi.org/10.1109/isccsp.2012.6217840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roma, Gerard, Pierre Alexandre Tremblay, and Owen Green. "Graph-Based Audio Looping And Granulation." In 2021 24th International Conference on Digital Audio Effects (DAFx). IEEE, 2021. http://dx.doi.org/10.23919/dafx51585.2021.9768228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turian, Joseph, Jordie Shier, George Tzanetakis, Kirk McNally, and Max Henry. "One Billion Audio Sounds from GPU-Enabled Modular Synthesis." In 2021 24th International Conference on Digital Audio Effects (DAFx). IEEE, 2021. http://dx.doi.org/10.23919/dafx51585.2021.9768246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Verma, Prateek, and Chris Chafe. "A Generative Model for Raw Audio Using Transformer Architectures." In 2021 24th International Conference on Digital Audio Effects (DAFx). IEEE, 2021. http://dx.doi.org/10.23919/dafx51585.2021.9768298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Xianke, Wei Xu, Juanting Liu, Weiming Yang, and Wenqing Cheng. "An Audio-Visual Fusion Piano Transcription Approach Based on Strategy." In 2021 24th International Conference on Digital Audio Effects (DAFx). IEEE, 2021. http://dx.doi.org/10.23919/dafx51585.2021.9768275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ducceschi, Michele, Stefan Bilbao, and Craig J. Webb. "Non-Iterative Schemes for the Simulation of Nonlinear Audio Circuits." In 2021 24th International Conference on Digital Audio Effects (DAFx). IEEE, 2021. http://dx.doi.org/10.23919/dafx51585.2021.9768254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Germain, Francois G. "Practical Virtual Analog Modeling Using MÖbius Transforms." In 2021 24th International Conference on Digital Audio Effects (DAFx). IEEE, 2021. http://dx.doi.org/10.23919/dafx51585.2021.9768245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vaillant, Gwendal Le, Thierry Dutoit, and Sebastien Dekeyser. "Improving Synthesizer Programming From Variational Autoencoders Latent Space." In 2021 24th International Conference on Digital Audio Effects (DAFx). IEEE, 2021. http://dx.doi.org/10.23919/dafx51585.2021.9768218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

La Pastina, Pier Paolo, Stefano D'Angelo, and Leonardo Gabrielli. "Arbitrary-Order IIR Antiderivative Antialiasing." In 2021 24th International Conference on Digital Audio Effects (DAFx). IEEE, 2021. http://dx.doi.org/10.23919/dafx51585.2021.9768266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hahn, Nara, Frank Schultz, and Sascha Spors. "Higher-Order Anti-Derivatives of Band Limited Step Functions for the Design of Radial Filters in Spherical Harmonics Expansions." In 2021 24th International Conference on Digital Audio Effects (DAFx). IEEE, 2021. http://dx.doi.org/10.23919/dafx51585.2021.9768233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography