Academic literature on the topic 'DIFFUSIVE THEORY'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DIFFUSIVE THEORY.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DIFFUSIVE THEORY"
Carpenter, J. R., T. Sommer, and A. Wüest. "Stability of a Double-Diffusive Interface in the Diffusive Convection Regime." Journal of Physical Oceanography 42, no. 5 (May 1, 2012): 840–54. http://dx.doi.org/10.1175/jpo-d-11-0118.1.
Full textKawamura, K., J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman. "Kinetic fractionation of gases by deep air convection in polar firn." Atmospheric Chemistry and Physics Discussions 13, no. 3 (March 15, 2013): 7021–59. http://dx.doi.org/10.5194/acpd-13-7021-2013.
Full textSokolov, I. V., I. I. Roussev, L. A. Fisk, M. A. Lee, T. I. Gombosi, and J. I. Sakai. "Diffusive Shock Acceleration Theory Revisited." Astrophysical Journal 642, no. 1 (April 10, 2006): L81—L84. http://dx.doi.org/10.1086/504406.
Full textMaia, Daniel Souza, and Ronald Dickman. "Diffusive epidemic process: theory and simulation." Journal of Physics: Condensed Matter 19, no. 6 (January 22, 2007): 065143. http://dx.doi.org/10.1088/0953-8984/19/6/065143.
Full textVirieux, Jean, Carlos Flores-Luna, and Dominique Gibert. "Asymptotic Theory For Diffusive Electromagnetic Imaging." Geophysical Journal International 119, no. 3 (December 1994): 857–68. http://dx.doi.org/10.1111/j.1365-246x.1994.tb04022.x.
Full textEgan, Jocelyn E., David R. Bowling, and David A. Risk. "Technical Note: Isotopic corrections for the radiocarbon composition of CO<sub>2</sub> in the soil gas environment must account for diffusion and diffusive mixing." Biogeosciences 16, no. 16 (August 28, 2019): 3197–205. http://dx.doi.org/10.5194/bg-16-3197-2019.
Full textKawamura, K., J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman. "Kinetic fractionation of gases by deep air convection in polar firn." Atmospheric Chemistry and Physics 13, no. 21 (November 15, 2013): 11141–55. http://dx.doi.org/10.5194/acp-13-11141-2013.
Full textParker, Ben. "Incalculably Diffusive." Novel 54, no. 2 (August 1, 2021): 287–91. http://dx.doi.org/10.1215/00295132-9004549.
Full textCarpenter, J. R., T. Sommer, and A. Wüest. "Simulations of a double-diffusive interface in the diffusive convection regime." Journal of Fluid Mechanics 711 (September 14, 2012): 411–36. http://dx.doi.org/10.1017/jfm.2012.399.
Full textFumarola, Francesco. "A Diffusive-Particle Theory of Free Recall." Advances in Cognitive Psychology 13, no. 3 (September 30, 2017): 201–13. http://dx.doi.org/10.5709/acp-0220-4.
Full textDissertations / Theses on the topic "DIFFUSIVE THEORY"
Mukherjee, Sayak. "Applications of Field Theory to Reaction Diffusion Models and Driven Diffusive Systems." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/39293.
Full textPh. D.
Merino, Aceituno Sara. "Contributions in fractional diffusive limit and wave turbulence in kinetic theory." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/256994.
Full textTraytak, Sergey D. "Diffusive interaction in the clusters of sinks: theory and some applications." Diffusion fundamentals 11 (2009) 4, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A13921.
Full textYokoyama, T., Y. Tanaka, and A. A. Golubov. "Theory of the Josephson effect in unconventional superconducting junctions with diffusive barriers." American Physical Society, 2007. http://hdl.handle.net/2237/8821.
Full textMohan, Aruna 1981. "Studies on the hydrodynamic equations based on the theory of diffusive volume transport." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29377.
Full textIncludes bibliographical references (leaves 41-42).
A recently formulated continuum theory has postulated that the momentum per unit volume of fluid differs from the mass flux whenever there are density gradients in the fluid resulting from the molecular transport of heat or mass. In such cases, the Navier-Stokes equations are unable to correctly predict the continuum fields and observed flow phenomena. A new set of continuum equations has been postulated to take into account density inhomogeneities in the fluid, and the consequent difference between the fluid's momentum per unit mass and mass velocity. In this thesis, the modified set of continuum equations is used to solve problems related to fluid flow in the presence of heat and mass transport. Additionally, this thesis includes a comparison between the momentum per unit volume and the mass flux of a fluid calculated from the generalized kinetic equation of Klimontovich.
by Aruna Mohan.
S.M.
Miao, Jiayuan. "Theory and Simulation of the Responses of Polymers to Electric Fields, Stress, Irradiation, and Diffusive Solvents." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1481279886096515.
Full textShamsalsadati, Sharmin. "Interferometry in diffusive systems: Theory, limitation to its practical application and its use in Bayesian estimation of material properties." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/50596.
Full textPh. D.
Cheung, Sai-Kit. "The study of weak localization effects on wave dynamics in mesoscopic media in the diffusive regime and at the localization transition /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202006%20CHEUNG.
Full textSawa, Y., T. Yokoyama, Y. Tanaka, and A. Golubov A. "Quasiclassical Green's function theory of the Josephson effect in chiral ρ-wave superconductor/diffusive normal metal/chiral ρ-wave superconductor junctions." American Physical Society, 2007. http://hdl.handle.net/2237/8824.
Full textWilks, Theresa M. "Toroidal phasing of resonant magnetic perturbation effect on edge pedestal transport in the DIII-D tokamak." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47558.
Full textBooks on the topic "DIFFUSIVE THEORY"
Dynamics of internal layers and diffusive interfaces. Philadelphia, Pa: Society for Industrial and Applied Mathematics, 1988.
Find full text1969-, Martelli Fabrizio, ed. Light propagation through biological tissue and other diffusive media: Theory, solutions, and software. Bellingham, Wash: SPIE, 2009.
Find full text(Matteo), Gregoratti M., and SpringerLink (Online service), eds. Quantum trajectories and measurements in continuous time: The diffusive case. Berlin: Springer, 2009.
Find full textMasao, Nagasawa. Schrödinger equations and diffusion theory. Basel: Birkhäuser Verlag, 1993.
Find full textNagasawa, Masao. Schrödinger Equations and Diffusion Theory. Basel: Springer Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-0560-5.
Full textPękalski, Andrzej, ed. Diffusion Processes: Experiment, Theory, Simulations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0031114.
Full textNagasawa, Masao. Schrödinger Equations and Diffusion Theory. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8568-3.
Full textPignedoli, A., ed. Some Aspects of Diffusion Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11051-1.
Full textservice), SpringerLink (Online, ed. Some Aspects of Diffusion Theory. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textPercival, Ian. Quantum state diffusion. Cambridge, UK: Cambridge University Press, 1998.
Find full textBook chapters on the topic "DIFFUSIVE THEORY"
Xu, Liu-Jun, and Ji-Ping Huang. "Theory for Thermal Bi/Multistability: Nonlinear Thermal Conductivity." In Transformation Thermotics and Extended Theories, 247–62. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5908-0_18.
Full textXu, Liu-Jun, and Ji-Ping Huang. "Theory for Diffusive Fizeau Drag: Willis Coupling." In Transformation Thermotics and Extended Theories, 207–17. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5908-0_15.
Full textSchirmacher, Walter. "Diffusive Motion in Simple Liquids." In Theory of Liquids and Other Disordered Media, 121–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06950-0_9.
Full textKnobloch, E., A. E. Deane, and J. Toomre. "Oscillatory Doubly Diffusive Convection: Theory and Experiment." In The Physics of Structure Formation, 117–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-73001-6_9.
Full textAregba-Driollet, Denise, Roberto Natalini, and Shaoqiang Tang. "Diffusive Discrete BGK Schemes for Nonlinear Hyperbolic-parabolic Systems." In Hyperbolic Problems: Theory, Numerics, Applications, 49–58. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8370-2_6.
Full textCombescure, Monique. "Recurrent Versus Diffusive Quantum Behavior for Time Dependent Hamiltonians." In Operator Calculus and Spectral Theory, 15–26. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-8623-9_2.
Full textMielke, Alexander, Guido Schneider, and Hannes Uecker. "Stability and Diffusive Dynamics on Extended Domains." In Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, 563–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56589-2_24.
Full textLi, Chunhong, and John L. Wilson. "Heuristic Theory on Diffusive Mixing Behavior at Fracture Junctions." In Remediation in Rock Masses, 28–41. Reston, VA: American Society of Civil Engineers, 2000. http://dx.doi.org/10.1061/9780784400159.ch03.
Full textFaris, William G. "Chapter One. Introduction: Diffusive Motion and Where It Leads." In Diffusion, Quantum Theory, and Radically Elementary Mathematics, edited by William G. Faris, 1–44. Princeton: Princeton University Press, 2006. http://dx.doi.org/10.1515/9781400865253.1.
Full textGasser, Ingenuin, Ling Hsiao, and Hailiang Li. "Asymptotic Convergence to Diffusive Wave of Bipolar Hydrodynamical Model for Semiconductors." In Hyperbolic Problems: Theory, Numerics, Applications, 165–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55711-8_14.
Full textConference papers on the topic "DIFFUSIVE THEORY"
Stone, A. D., H. E. Tureci, L. Ge, and S. Rotter. "Theory of Diffusive Random Lasers." In Frontiers in Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/fio.2008.fws2.
Full textBanerjee, Rupak K., Peter M. Bungay, Malisa Sarntinoranont, and Srinivas Chippada. "Generalizing the Theory of Microdialysis." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32970.
Full textYOKOYAMA, T., Y. TANAKA, A. A. GOLUBOV, and Y. ASANO. "THEORY OF JOSEPHSON EFFECT IN DIFFUSIVE d-WAVE JUNCTIONS." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0022.
Full textJalil, M. B. A. "Generalized diffusive spin transport theory in magnetic multilayer structures." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1463738.
Full textKhoo, I. C., Ping Zhou, Liang Yu, Hong Li, R. G. Lindquist, and P. LoPresti. "Dynamics of transient multiwave mixing-mediated effects-theory and experiment with liquid crystals." In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nlo.1992.mb6.
Full textJohn, Sajeev. "Theory of Multiple-Light-Scattering Spectroscopy." In Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/aoipm.1994.wpl.58.
Full textYOKOYAMA, T., Y. TANAKA, and A. A. GOLUBOV. "THEORY OF CHARGE TRANSPORT IN DIFFUSIVE FERROMAGNET/p-WAVE SUPERCONDUCTOR JUNCTIONS." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0020.
Full textJamali, Vahid, Arman Ahmadzadeh, Nariman Farsad, and Robert Schober. "SCW codes for optimal CSI-free detection in diffusive molecular communications." In 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017. http://dx.doi.org/10.1109/isit.2017.8007118.
Full textKogan, Eugene, and Moshe Kaveh. "Probability Distributions for Diffusive Light." In Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/aoipm.1996.trit80.
Full textWebb, G. M., G. P. Zank, E. Kh Kaghashvili, and J. A. leRoux. "Compound and perpendicular diffusive transport of cosmic rays." In PHYSICS OF THE INNER HELIOSHEATH: Voyager Observations, Theory, and Future Prospects; 5th Annual IGPP International Astrophysics Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2359330.
Full textReports on the topic "DIFFUSIVE THEORY"
Ragusa, Jean, and Wolfgang Bangerth. 3-D Deep Penetration Neutron Imaging of Thick Absorgin and Diffusive Objects Using Transport Theory. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1022707.
Full textElton, A. B. H. A numerical theory of lattice gas and lattice Boltzmann methods in the computation of solutions to nonlinear advective-diffusive systems. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6480937.
Full textSantacreu, Ana Maria. Innovation, Diffusion, and Trade: Theory and Measurement. Federal Reserve Bank of St. Louis, 2014. http://dx.doi.org/10.20955/wp.2014.042.
Full textSchulz, Michael. Eigenfunction Methods in Magnetospheric Radial-Diffusion Theory. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada175408.
Full textGolden, Kenneth M., Jingyi Zhu, and N. B. Murphy. Spectral Theory of Advective Diffusion in the Ocean. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada593131.
Full textChang, Chong, and Hee J. Chang. Hydrodynamic theory of diffusion in gases and plasmas. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1068209.
Full textHoneck, H. C. A study of alternate diffusion theory models, December 16, 1988. Office of Scientific and Technical Information (OSTI), February 1989. http://dx.doi.org/10.2172/6318525.
Full textLe, T. T. User's manual for GILDA: An infinite lattice diffusion theory calculation. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/6481434.
Full textEkdahl, Carl, William Broste, and Jeffrey Johnson. Magnetic-Field Diffusion Effects in Beam Position Monitors I: Theory. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1876769.
Full textZilberman, David, Amir Heiman, and B. McWilliams. Economics of Marketing and Diffusion of Agricultural Inputs. United States Department of Agriculture, November 2003. http://dx.doi.org/10.32747/2003.7586469.bard.
Full text