Dissertations / Theses on the topic 'Diffusion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Diffusion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Imoto, Yu, and Takashi Odagaki. "Diffusion on diffusing particles." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-193282.
Full textImoto, Yu, and Takashi Odagaki. "Diffusion on diffusing particles." Diffusion fundamentals 6 (2007) 11, S. 1-7, 2007. https://ul.qucosa.de/id/qucosa%3A14185.
Full textBernhardt, Thomas. "Reflected diffusions and piecewise diffusion approximations of Levy processes." Thesis, London School of Economics and Political Science (University of London), 2017. http://etheses.lse.ac.uk/3659/.
Full textPrehl, Janett Hoffmann Karl-Heinz. "Diffusion on fractals Diffusion auf Fraktalen /." [S.l. : s.n.], 2007.
Find full textRane, Swati. "Diffusion tensor imaging at long diffusion time." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29708.
Full textCommittee Chair: Hu, Xiaoping; Committee Member: Brummer, Marijn; Committee Member: Duong, Tim; Committee Member: Keilholz, Shella; Committee Member: Schumacher, Eric. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.
Full textEsta tesis se centra en el comportamiento en tiempos grandes de las soluciones de la ecuación de Fisher- KPP de reacción-difusión con difusión fraccionaria. Este tipo de ecuación surge, por ejemplo, en la propagación espacial o en la propagación de especies biológicas (ratas, insectos,...). En la dinámica de poblaciones, la cantidad que se estudia representa la densidad de la población. Es conocido que, bajo algunas hipótesis específicas, la solución tiende a un estado estable del problema de evolución, cuando el tiempo tiende a infinito. En otras palabras, la población invade el medio, lo que corresponde a la supervivencia de la especie, y nosotros queremos entender con qué velocidad se lleva a cabo esta invasión. Para responder a esta pregunta, hemos creado un nuevo método para estudiar la velocidad de propagación cuando se consideran difusiones fraccionarias, además hemos aplicado este método en tres problemas diferentes. La Parte I de la tesis está dedicada al análisis de la ubicación asintótica de los conjuntos de nivel de la solución de dos problemas diferentes: modelos de Fisher- KPP en medios periódicos y sistemas cooperativos, ambos consideran difusión fraccionaria. En el primer modelo, se prueba que, bajo ciertas hipótesis sobre el medio periódico, la solución se propaga exponencialmente rápido en el tiempo, además encontramos el exponente exacto que aparece en esta velocidad de propagación exponencial. También llevamos a cabo simulaciones numéricas para investigar la dependencia de la velocidad de propagación con la condición inicial. En el segundo modelo, se prueba que la velocidad de propagación es nuevamente exponencial en el tiempo, con un exponente que depende del índice más pequeño de los Laplacianos fraccionarios y también del término de reacción. La Parte II de la tesis ocurre en un entorno de dos dimensiones, donde se reproduce un tipo ecuación de Fisher- KPP con difusión estándar, excepto en una línea del plano, en el que la difusión fraccionada aparece. El plano será llamado "campo" y la línea "camino", como una referencia a las situaciones biológicas que tenemos en mente. De hecho, desde hace tiempo se sabe que la difusión rápida en los caminos puede causar un efecto en la propagación de epidemias. Probamos que la velocidad de propagación es exponencial en el tiempo en el camino, mientras que depende linealmente del tiempo en el campo. Contrariamente a los precisos exponentes obtenidos en la Parte I, para este modelo, no fuimos capaces de dar una localización exacta de los conjuntos de nivel en la carretera y en el campo. La forma de propagación de los conjuntos de nivel en el campo se investiga a través de simulaciones numéricas
Benson, Debbie Lisa. "Reaction diffusion models with spatially inhomogeneous diffusion coefficients." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239337.
Full textPrehl, Janett. "Diffusion on fractals and space-fractional diffusion equations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001068.
Full textThe aim of this thesis is the examination of sub- and superdiffusive processes in fractal structures. The focus of the work concentrates on two separate approaches that are chosen and varied according to the corresponding regime. Thus, we obtain new insights about the underlying mechanisms and a more appropriate way of description for both regimes. In the first part subdiffusion is considered, which plays a crucial role for transport processes, as in living tissues. First, we model the fractal state space via finite Sierpinski carpets with absorbing boundary conditions and we solve the master equation to compute the time development of the probability distribution. To characterize the diffusion on regular as well as random carpets we determine the longest decay time of the probability distribution, the mean exit time and the Random walk dimension. Thus, we can verify the influence of random structures on the diffusive dynamics. In the second part of this thesis superdiffusive processes are studied by means of the diffusion equation. Its second order space derivative is extended to fractional order, which represents the fractal properties of the surrounding media. The resulting space-fractional diffusion equations span a linking regime from the irreversible diffusion equation to the reversible (half) wave equation. The corresponding solutions are analyzed by different entropies, as the Shannon, Tsallis or Rényi entropies and their entropy production rates, which are natural measures of irreversibility. We find an entropy production paradox, i. e. an unexpected increase of the entropy production rate by decreasing irreversibility of the processes. Due to an appropriate rescaling of the entropy we are able to resolve the paradox
Kuchel, Philip W., and Guilhem Pages. "NMR diffusion diffraction and diffusion interference from cells." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-194150.
Full textKuchel, Philip W., and Guilhem Pages. "NMR diffusion diffraction and diffusion interference from cells." Diffusion fundamentals 6 (2007) 74, S. 1-16, 2007. https://ul.qucosa.de/id/qucosa%3A14254.
Full textHinchcliffe, Owen G. "Diffusion algebras." Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425565.
Full textCussler, Edward L. "Diffusion barriers." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-194127.
Full textCussler, Edward L. "Diffusion barriers." Diffusion fundamentals 6 (2007) 72, S. 1-12, 2007. https://ul.qucosa.de/id/qucosa%3A14252.
Full textChakraborty, Jay. "Diffusion in stressed thin films = Diffusion in dünnen Schichten." Stuttgart Max-Planck-Inst. für Metallforschung, 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975753460.
Full textCoulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.
Full textThis thesis focuses on the long time behaviour, and more precisely on fast propagation, in Fisher-KPP reaction diffusion equations involving fractional diffusion. This type of equation arises, for example, in spreading of biological species. Under some specific assumptions, the population invades the medium and we want to understand at which speed this invasion takes place when fractional diffusion is at stake. To answer this question, we set up a new method and apply it on different models. In a first part, we study two different problems, both including fractional diffusion : Fisher-KPP models in periodic media and cooperative systems. In both cases, we prove, under additional assumptions, that the solution spreads exponentially fast in time and we find the precise exponent of propagation. We also carry out numerical simulations to investigate the dependence of the speed of propagation on the initial condition. In a second part, we deal with a two dimensional environment, where reproduction of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which fractional diffusion takes place. The plane is referred to as "the field" and the line to "the road", as a reference to the biological situations we have in mind. We prove that the speed of propagation is exponential in time on the road, whereas it depends linearly on time in the field. The expansion shape of the level sets in the field is investigated through numerical simulations
Pavlin, Tina, and John Georg Seland. "Investigating effects from restricted diffusion in multi-component diffusion data." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-178775.
Full textPavlin, Tina, and John Georg Seland. "Investigating effects from restricted diffusion in multi-component diffusion data." Diffusion fundamentals 22 (2014) 9, S. 1-6, 2014. https://ul.qucosa.de/id/qucosa%3A13489.
Full textJONCKHEERE, THIBAUT. "Diffusion d'ondes en milieu atomique : chaos quantique et diffusion multiple." Paris 6, 2001. http://www.theses.fr/2001PA066126.
Full textPrehl, geb Balg Janett. "Diffusion on Fractals." Master's thesis, Universitätsbibliothek Chemnitz, 2007. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200701033.
Full textIn dieser Arbeit untersuchen wir anomale Diffusion auf Fraktalen unter Einwirkung eines statisches äußeres Feldes. Wir benutzen die Mastergleichung, um die Wahrscheinlichkeitsverteilung der Teilchen zu berechnen, um daraus wichtige Größen wie das mittlere Abstandsquadrat zu bestimmen. Wir wenden unterschiedliche Feldstärken bei verschiedenen regelmäßigen Sierpinski-Teppichen an und erhalten maximale Driftgeschwindigkeiten für schwache Feldstärken. Über ~t^{2/d_w} bestimmen wir die Random-Walk-Dimension d_w als d_w<2. Dieser Wert für d_w entspricht der Superdiffusion, obwohl der Diffusionsprozess durch Strukturen des Teppichs, wie Sackgassen, behindert wird. Es schient, dass dies das Ergebnis zweier konkurrierender Effekte ist, die durch das Anlegen eines äußeren Feldes entstehen. Einerseits bewegen sich die Teilchen bevorzugt entlang der Feldrichtung. Andererseits gelangen einige Teilchen in Sackgassen. Um die Sackgassen, die in Feldrichtung liegen, zu verlassen, müssen sich die Teilchen entgegen der Feldrichtung bewegen. Somit sind die Teilchen eine gewisse Zeit in der Sackgasse gefangen. Infolge der durch das äußere Feld beschleunigten und der gefangenen Teilchen, verbreitert sich die Wahrscheinlichkeitsverteilung der Teilchen und somit ist d_w<2
Bowen, Mark. "High order diffusion." Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267628.
Full textBarker, John A. "Diffusion in hydrogeology." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-193862.
Full textHeinke, Lars. "Diffusion in MOFs." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-198185.
Full textEloul, Shaltiel. "Diffusion to electrodes." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:88c5f1d0-9f2f-49d5-b46d-6eeb5b7d4bfe.
Full textBarker, John A. "Diffusion in hydrogeology." Diffusion fundamentals 6 (2007) 50, S. 1-18, 2007. https://ul.qucosa.de/id/qucosa%3A14229.
Full textПодолкова, Світлана Віталіївна, Светлана Витальевна Подолкова, Svitlana Vitaliivna Podolkova, and Y. Mykula. "Diffusion of innovation." Thesis, Вид-во СумДУ, 2009. http://essuir.sumdu.edu.ua/handle/123456789/16772.
Full textAgrawal, Mani Kant. "Diffusion activity networks." Raleigh, NC : North Carolina State University, 1999. http://www.lib.ncsu.edu/etd/public/etd-52301811109943140/etd.pdf.
Full textZerhouni, Abder Rahim. "Diffusion et feuilletages." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37601925f.
Full textHarris, John William. "Branching diffusion processes." Thesis, University of Bath, 2006. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428379.
Full textMolkenthin, Nora. "Advection-diffusion-networks." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/17064.
Full textThe earth’s climate is an extraordinarily complex, highly non-linear system with a multitude of influences and interactions between a very large number of variables and parameters. Complementary to the description of the system using global climate models, in recent years, a description based on the system’s interaction structure has been developed. Rather than modelling the system in as much detail as possible, here time series data is used to identify underlying large scale structures. The challenge then lies in the interpretation of these structures. In this thesis I approach the question of the interpretation of network measures from a general perspective, in order to derive a correspondence between properties of the network topology and properties of the underlying physical system. To this end I develop two methods of network construction from a velocity field, using the advection-diffusion-equation (ADE) for temperature-dissipation in the system. For the first method, the ADE is solved for δ-peak-shaped initial and open boundary conditions. The resulting local temperature profiles are used to define a correlation function and thereby a network. Those networks are analysed and compared to climate networks from data. Despite the simplicity of the model, it captures some of the most salient features of climate networks. The second network construction method relies on a discretisation of the ADE with a stochastic term. I construct weighted and unweighted networks for four different cases and suggest network measures, that can be used to distinguish between the different systems, based on the topology of the network and the node locations. The reconstruction methods presented in this thesis successfully model many features, found in climate networks from well-understood physical mechanisms. This can be regarded as a justification of the use of climate networks, as well as a tool for their interpretation.
Golshani, Fariborz. "Boron doping of diamond powder by enhanced diffusion and forced diffusion : diffusion concentrations, mechanical, chemical and optical properties /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9842530.
Full textPablo, Hélène. "Diffusion chimique dans les verres borosilicates d'intérêt nucléaire." Thesis, Paris, Muséum national d'histoire naturelle, 2017. http://www.theses.fr/2017MNHN0014/document.
Full textChemical diffusion is a key-phenomenon during nuclear glass synthesis. At high temperature, diffusion leads to homogenization of the melt contributing to the transformation of heterogeneous waste and frit precursors to a homogeneous glass after cooling. In contrast, in the supercooled liquid, diffusion is a critical factor affecting phase separation and/or crystallization processes that must be avoided when producing a high quality final product.In this manuscript, the impact of chemical diffusion on crystallization and liquid homogenization is studied for a simplified sodium borosilicate glass between its glass transition temperature and its synthesis temperature. For this kind of system, qualified as multicomponent, the description of diffusive phenomena requires the calculation of a diffusion matrix that takes into account diffusive couplings between species. These couplings can be written in the form of diffusive mechanisms or “diffusive exchanges” that are invariant with temperature. The activation energies associated with these exchanges are close to the activation energy of shear viscosity which suggests that viscous flow and chemical diffusion are driven by a single mechanism related to the frequency of Si-O and B-O bond breaking. It is also highlighted that in the supercooled liquid, the principal diffusive exchange (SiO2-Na2O) and the secondary diffusive exchange (SiO2-B2O3) play a significant role on the kinetics and direction of growth of crystalline phases which are formed in our system. These results are used to rationalise the evolution of compositional gradients in the vicinity and far from crystals. In the last part of this work, a complexification of the glasses was initiated by adding lanthanum to simulate one of the main lanthanides of the R7T7 nuclear glass composition. The data collected reveal diffusive couplings between lanthanum and silicon. These couplings, combined with the other results explain the formation of a lanthanum borosilicate phase (LaBSiO5)
Mukherjee, Sayak. "Applications of Field Theory to Reaction Diffusion Models and Driven Diffusive Systems." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/39293.
Full textPh. D.
Jonckheere, Thibaut. "Diffusion d'ondes dans un milieu atomique : chaos quantique et diffusion multiple." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2000. http://tel.archives-ouvertes.fr/tel-00000410.
Full textLa première partie étudie le problème
des niveaux excités d'un atome non-hydrogenoide en champ extérieur. Ce système est très similaire
au cas de l'hydrogène dans le même champ extérieur, mais est plus complexe à cause de la diffusion
de l'onde électronique sur le coeur ionique non-hydrogenoide. On montre dans cette première partie que la
présence du coeur ionique est mathématiquement équivalente à celle d'un ou plusieurs diffuseurs
ponctuels. Ceci permet d'obtenir une équation qui, d'une part, autorise un calcul efficace des niveaux
d'énergie du système à partir de ceux pour l'atome d'hydrogène dans le même champ extérieur,
et qui d'autre part mène à la prédiction des propriétés statistiques des niveaux d'énergie
du système, en fonction de celles du système hydrogenoide correspondant.
La deuxième partie est consacrée au problème
de la diffusion multiple d'une onde lumineuse en milieu atomique, et en particulier à l'étude de l'augmentation
cohérente de la rétrodiffusion par un gaz d'atomes refroidis. L'augmentation cohérente de la rétrodiffusion
est un effet d'interférence entre des paires de chemins de diffusion multiple, et est un phénomène
bien étudié pour des diffuseurs classiques. Dans cette deuxième partie, nous montrons que la prise
en compte de la structure interne atomique est essentielle pour la compréhension de la rétrodiffusion cohérente
par un milieu atomique,
et mène à une diminution significative des facteurs d'augmentation observables. Un calcul explicite de la
diffusion simple et de la diffusion double par des atomes est donné, et les résultats sont comparés à des données
expérimentales récentes.
Endal, Jørgen. "Nonlinear fractional convection-diffusion equations, with nonlocal and nonlinear fractional diffusion." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22955.
Full textHrabetova, Sabina. "Extracellular diffusion in brain: distinct diffusion regimes at different spatial scales." Diffusion fundamentals 16 (2011) 3, S. 1-2, 2011. https://ul.qucosa.de/id/qucosa%3A13731.
Full textShah, Milap. "Parallel Aes diffusion inter block diffusion at bit level and compression." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-42449.
Full textKharchenko, Andriy V. "La diffusion de la lumière par les gaz : de la diffusion incohérente à la diffusion exacerbée ; application à la vélocimétrie." Palaiseau, Ecole polytechnique, 2000. http://www.theses.fr/2000EPXX0013.
Full textEuschen, Andreas. "Diffusion in flüssigkristallinen Silastomeren : e. Beitr. zur Kontrolle d. Arzneistofffreisetzung durch Diffusion /." Saarbrücken, 1988. http://www.gbv.de/dms/bs/toc/016585976.pdf.
Full textZhang, Qiaofu. "Use Diffusion Multiples to Investigate Diffusion and Precipitation Behavior in Binary Systems." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1483702959561522.
Full textEuschen, Andreas. "Diffusion in flüssigkristallinen Silastomeren : e. Beitrag zur Kontrolle d. Arzneistofffreisetzung durch Diffusion /." [S.l.], 1988. http://www.gbv.de/dms/bs/toc/016585976.pdf.
Full textHeim, Susanne. "Statistical Diffusion Tensor Imaging." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-72610.
Full textFredriksson, Lars. "Normal and anomalous diffusion." Thesis, Karlstads universitet, Fakulteten för teknik- och naturvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-6561.
Full textHariz, Jakob. "Diffusion in fractal globules." Thesis, Umeå universitet, Institutionen för fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-126570.
Full textTa, Thi nguyet nga. "Sub-gradient diffusion equations." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0137/document.
Full textThis thesis is devoted to the study of evolution problems where the dynamic is governed by sub-gradient diffusion operator. We are interest in two kind of evolution problems. The first problem is governed by local operator of Leray-Lions type with a bounded domain. In this problem, the operator is maximal monotone and does not satisfied the standard polynomial growth control condition. Typical examples appears in the study of non-Neutonian fluid and also in the description of sub-gradient flows dynamics. To study the problem we handle the equation in the context of nonlinear PDE with singular flux. We use the theory of tangential gradient to characterize the state equation that gives the connection between the flux and the gradient of the solution. In the stationary problem, we have the existence of solution, we also get the equivalence between the initial minimization problem, the dual problem and the PDE. In the evolution one, we provide the existence, uniqueness of solution and the contractions. The second problem is governed by a discrete operator. We study the discrete evolution equation which describe the process of collapsing sandpile. This is a typical example of Self-organized critical phenomena exhibited by a critical slop. We consider the discrete evolution equation where the dynamic is governed by sub-gradient of indicator function of the unit ball. We begin by establish the model, we prove existence and uniqueness of the solution. Then by using dual arguments we study the numerical computation of the solution and we present some numerical simulations
Palmieri, Benoit. "Diffusion in channeled structures." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18269.
Full textLa méthode dévelopée par Ronis et Vertenstein [J. Chem. Phys. vol. 85, 1628, (1986)] est utilisée pour calculer la perméabilité du Xénon à l'intérieur du zéolite Theta-1 et de l'Argon à l'intérieur d'un cristal d'alpha-quartz. Ces deux sodalites contiennent des canaux qui sont larges et unidimensionnels dans le premier cas et étroits et interconnectés dans le deuxième. La dynamique d'une petite partie des atomes du cristal est explicitement simulée. Cette dynamique est décrite à partir d'équations de Langevin généralisées qui reproduisent l'effet du reste du cristal. L'énergie libre du gaz absorbé à l'intérieur du cristal est approximée. Le profil énergétique à l'intérieur du zéolite Theta-1 est presque plat et contient des barrières énergétiques peu élevées. Celui à l'intérieur du quartz contient de larges barrières à la diffusion. La perméabilité des deux systèmes est rapportée et comparée en détail avec celle obtenue à partir de la théorie dite des états de transitions. Le rôle qu'ont les modes de vibrations du cristal sur la diffusion est aussi étudié. Pour le Xénon à l'intérieur du zéolite Theta-1, la théorie des états de transitions ne décrit pas adéquatement la diffusion du gaz et les vibrations du cristal ne jouent pas un grand rôle. Pour l'argon dans le quartz, la théorie des états de transitions est plus appropriée et les vibrations du cristal ne peuvent être négligées. Pour les systèmes où les vibrations du cristal jouent un rôle, les premières corrections quantiques sont calculées. Dans ce cas, la diffusion est étudiée à partir de la formulation des intégrales de chemins. Les intégrales de chemins sont combinées et, en utilisant la théorie développée par Martin, Siggia et Rose [Phys. Rev. A., vol. 8, 423 (1973)], réduites à un système d'équations de Langevin généralisées q
Abdullatif, Tawfik A. "Turbulent diffusion impinging flames." Thesis, University of Manchester, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488402.
Full textKallioras, Panagiotis. "Diffusion Through Multilayer Networks." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-251289.
Full textAllen, Elizabeth D. "Diffusion through strained semiconductors." Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267629.
Full textGandhi, U. P. "Diffusion in cellulose derivatives." Thesis, Cardiff University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376555.
Full textDray, A. E. "Diffusion bonding of aluminium." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382557.
Full text