Academic literature on the topic 'Diffusion-reaction equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion-reaction equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Diffusion-reaction equation"

1

Yu, Weiming. "Identification of Coefficients in Reaction-Diffusion Equations." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1076186036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hellander, Stefan. "Stochastic Simulation of Reaction-Diffusion Processes." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-198522.

Full text
Abstract:
Numerical simulation methods have become an important tool in the study of chemical reaction networks in living cells. Many systems can, with high accuracy, be modeled by deterministic ordinary differential equations, but other systems require a more detailed level of modeling. Stochastic models at either the mesoscopic level or the microscopic level can be used for cases when molecules are present in low copy numbers. In this thesis we develop efficient and flexible algorithms for simulating systems at the microscopic level. We propose an improvement to the Green's function reaction dynamics algorithm, an efficient microscale method. Furthermore, we describe how to simulate interactions with complex internal structures such as membranes and dynamic fibers. The mesoscopic level is related to the microscopic level through the reaction rates at the respective scale. We derive that relation in both two dimensions and three dimensions and show that the mesoscopic model breaks down if the discretization of space becomes too fine. For a simple model problem we can show exactly when this breakdown occurs. We show how to couple the microscopic scale with the mesoscopic scale in a hybrid method. Using the fact that some systems only display microscale behaviour in parts of the system, we can gain computational time by restricting the fine-grained microscopic simulations to only a part of the system. Finally, we have developed a mesoscopic method that couples simulations in three dimensions with simulations on general embedded lines. The accuracy of the method has been verified by comparing the results with purely microscopic simulations as well as with theoretical predictions.<br>eSSENCE
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Stephen. "Stochastic reaction-diffusion models in biology." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33142.

Full text
Abstract:
Every cell contains several millions of diffusing and reacting biological molecules. The interactions between these molecules ultimately manifest themselves in all aspects of life, from the smallest bacterium to the largest whale. One of the greatest open scientific challenges is to understand how the microscopic chemistry determines the macroscopic biology. Key to this challenge is the development of mathematical and computational models of biochemistry with molecule-level detail, but which are sufficiently coarse to enable the study of large systems at the cell or organism scale. Two such models are in common usage: the reaction-diffusion master equation, and Brownian dynamics. These models are utterly different in both their history and in their approaches to chemical reactions and diffusion, but they both seek to address the same reaction-diffusion question. Here we make an in-depth study into the physical validity of these models under various biological conditions, determining when they can reliably be used. Taking each model in turn, we propose modifications to the models to better model the realities of the cellular environment, and to enable more efficient computational implementations. We use the models to make predictions about how and why cells behave the way they do, from mechanisms of self-organisation to noise reduction. We conclude that both models are extremely powerful tools for clarifying the details of the mysterious relationship between chemistry and biology.
APA, Harvard, Vancouver, ISO, and other styles
4

Knaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meral, Gulnihal. "Numerical Solution Of Nonlinear Reaction-diffusion And Wave Equations." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610568/index.pdf.

Full text
Abstract:
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quadrature method (DQM) is used for the spatial discretization of IBVPs and Cauchy problems defined by the nonlinear reaction-diffusion and wave equations. The DRBEM and DQM applications result in first and second order system of ordinary differential equations in time. These systems are solved with three different time integration methods, the finite difference method (FDM), the least squares method (LSM) and the finite element method (FEM) and comparisons among the methods are made. In the FDM a relaxation parameter is used to smooth the solution between the consecutive time levels. It is found that DRBEM+FEM procedure gives better accuracy for the IBVPs defined by nonlinear reaction-diffusion equation. The DRBEM+LSM procedure with exponential and rational radial basis functions is found suitable for exterior wave problem. The same result is also valid when DQM is used for space discretization instead of DRBEM for Cauchy and IBVPs defined by nonlinear reaction-diffusion and wave equations.
APA, Harvard, Vancouver, ISO, and other styles
6

Larsson, Stig. "On reaction-diffusion equation and their approximation by finite element methods /." Göteborg : Chalmers tekniska högskola, Dept. of Mathematics, 1985. http://bibpurl.oclc.org/web/32831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kieri, Emil. "Accuracy aspects of the reaction-diffusion master equation on unstructured meshes." Thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-145978.

Full text
Abstract:
The reaction-diffusion master equation (RDME) is a stochastic model for spatially heterogeneous chemical systems. Stochastic models have proved to be useful for problems from molecular biology since copy numbers of participating chemical species often are small, which gives a stochastic behaviour. The RDME is a discrete space model, in contrast to spatially continuous models based on Brownian motion. In this thesis two accuracy issues of the RDME on unstructured meshes are studied. The first concerns the rates of diffusion events. Errors due to previously used rates are evaluated, and a second order accurate finite volume method, not previously used in this context, is implemented. The new discretisation improves the accuracy considerably, but unfortunately it puts constraints on the mesh, limiting its current usability. The second issue concerns the rates of bimolecular reactions. Using the macroscopic reaction coefficients these rates become too low when the spatial resolution is high. Recently, two methods to overcome this problem by calculating mesoscopic reaction rates for Cartesian meshes have been proposed. The methods are compared and evaluated, and are found to work remarkably well. Their possible extension to unstructured meshes is discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Isobel Micheline. "The existance of multiple steady-state solutions of a reaction-diffusion equation." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gibbs, Simon Paul. "Solutions of the reaction-diffusion eikonal equation on closed two-dimensional manifolds." Thesis, Glasgow Caledonian University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Josien, Marc. "Etude mathématique et numérique de quelques modèles multi-échelles issus de la mécanique des matériaux." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1120/document.

Full text
Abstract:
Le travail de cette thèse a porté sur l'étude mathématique et numérique de quelques modèles multi-échelles issus de la physique des matériaux. La première partie de ce travail est consacrée à l'homogénéisation mathématique d'un problème elliptique avec une petite échelle. Nous étudions le cas particulier d'un matériau présentant une structure périodique avec un défaut. En adaptant la théorie classique d'Avellaneda et Lin pour les milieux périodiques, on démontre qu'on peut approximer finement la solution d'un tel problème, notamment à l'échelle microscopique. Nous obtenons des taux de convergence dépendant de l'étalement du défaut. On démontre aussi quelques propriétés des fonctions de Green d'un problème elliptique périodique avec conditions de bord périodiques. Les dislocations sont des lignes de défaut de la matière responsables du phénomène de plasticité. Les deuxième et troisième parties de ce mémoire portent sur la simulation de dislocations, d'abord en régime stationnaire puis en régime dynamique. Nous utilisons le modèle de Peierls, qui couple échelle atomique et échelle mésoscopique. Dans le cadre stationnaire, on obtient une équation intégrodifférentielle non-linéaire avec un laplacien fractionnaire: l'équation de Weertman. Nous en étudions les propriétés mathématiques et proposons un schéma numérique pour en approximer la solution. Dans le cadre dynamique, on obtient une équation intégrodifférentielle à la fois en temps et en espace. Nous en faisons une brève étude mathématique, et comparons différents algorithmes pour la simuler. Enfin, dans la quatrième partie, nous étudions la limite macroscopique d'une chaîne d'atomes soumis à la loi de Newton. Des arguments formels suggèrent que celle-ci devrait être décrite par une équation des ondes non-linéaires. Or, nous démontrons --sous certaines hypothèses-- qu'il n'en est rien lorsque des chocs apparaissent<br>In this thesis we study mathematically and numerically some multi-scale models from materials science. First, we investigate an homogenization problem for an oscillating elliptic equation. The material under consideration is described by a periodic structure with a defect at the microscopic scale. By adapting Avellaneda and Lin's theory for periodic structures, we prove that the solution of the oscillating equation can be approximated at a fine scale. The rates of convergence depend upon the integrability of the defect. We also study some properties of the Green function of periodic materials with periodic boundary conditions. Dislocations are lines of defects inside materials, which induce plasticity. The second part and the third part of this manuscript are concerned with simulation of dislocations, first in the stationnary regime then in the dynamical regime. We use the Peierls model, which couples atomistic and mesoscopic scales and involves integrodifferential equations. In the stationary regime, dislocations are described by the so-called Weertman equation, which is nonlinear and involves a fractional Laplacian. We study some mathematical properties of this equation and propose a numerical scheme for approximating its solution. In the dynamical regime, dislocations are described by an equation which is integrodifferential in time and space. We compare some numerical methods for recovering its solution. In the last chapter, we investigate the macroscopic limit of a simple chain of atoms governed by the Newton equation. Surprisingly enough, under technical assumptions, we show that it is not described by a nonlinear wave equation when shocks occur
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!