Academic literature on the topic 'Diffusion-reaction equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion-reaction equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Diffusion-reaction equation"

1

Yu, Weiming. "Identification of Coefficients in Reaction-Diffusion Equations." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1076186036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hellander, Stefan. "Stochastic Simulation of Reaction-Diffusion Processes." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-198522.

Full text
Abstract:
Numerical simulation methods have become an important tool in the study of chemical reaction networks in living cells. Many systems can, with high accuracy, be modeled by deterministic ordinary differential equations, but other systems require a more detailed level of modeling. Stochastic models at either the mesoscopic level or the microscopic level can be used for cases when molecules are present in low copy numbers. In this thesis we develop efficient and flexible algorithms for simulating systems at the microscopic level. We propose an improvement to the Green's function reaction dynamics
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Stephen. "Stochastic reaction-diffusion models in biology." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33142.

Full text
Abstract:
Every cell contains several millions of diffusing and reacting biological molecules. The interactions between these molecules ultimately manifest themselves in all aspects of life, from the smallest bacterium to the largest whale. One of the greatest open scientific challenges is to understand how the microscopic chemistry determines the macroscopic biology. Key to this challenge is the development of mathematical and computational models of biochemistry with molecule-level detail, but which are sufficiently coarse to enable the study of large systems at the cell or organism scale. Two such mo
APA, Harvard, Vancouver, ISO, and other styles
4

Knaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meral, Gulnihal. "Numerical Solution Of Nonlinear Reaction-diffusion And Wave Equations." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610568/index.pdf.

Full text
Abstract:
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quadrature method (DQM) is used for the spatial discretization of IBVPs and Cauchy problem
APA, Harvard, Vancouver, ISO, and other styles
6

Larsson, Stig. "On reaction-diffusion equation and their approximation by finite element methods /." Göteborg : Chalmers tekniska högskola, Dept. of Mathematics, 1985. http://bibpurl.oclc.org/web/32831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kieri, Emil. "Accuracy aspects of the reaction-diffusion master equation on unstructured meshes." Thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-145978.

Full text
Abstract:
The reaction-diffusion master equation (RDME) is a stochastic model for spatially heterogeneous chemical systems. Stochastic models have proved to be useful for problems from molecular biology since copy numbers of participating chemical species often are small, which gives a stochastic behaviour. The RDME is a discrete space model, in contrast to spatially continuous models based on Brownian motion. In this thesis two accuracy issues of the RDME on unstructured meshes are studied. The first concerns the rates of diffusion events. Errors due to previously used rates are evaluated, and a second
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Isobel Micheline. "The existance of multiple steady-state solutions of a reaction-diffusion equation." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gibbs, Simon Paul. "Solutions of the reaction-diffusion eikonal equation on closed two-dimensional manifolds." Thesis, Glasgow Caledonian University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Josien, Marc. "Etude mathématique et numérique de quelques modèles multi-échelles issus de la mécanique des matériaux." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1120/document.

Full text
Abstract:
Le travail de cette thèse a porté sur l'étude mathématique et numérique de quelques modèles multi-échelles issus de la physique des matériaux. La première partie de ce travail est consacrée à l'homogénéisation mathématique d'un problème elliptique avec une petite échelle. Nous étudions le cas particulier d'un matériau présentant une structure périodique avec un défaut. En adaptant la théorie classique d'Avellaneda et Lin pour les milieux périodiques, on démontre qu'on peut approximer finement la solution d'un tel problème, notamment à l'échelle microscopique. Nous obtenons des taux de converge
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!