Academic literature on the topic 'Diffusion Operator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion Operator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Diffusion Operator"

1

Franců, Jan. "Homogenization of diffusion equation with scalar hysteresis operator." Mathematica Bohemica 126, no. 2 (2001): 363–77. http://dx.doi.org/10.21136/mb.2001.134031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Antoniou, I., I. Prigogine, V. Sadovnichii, and S. A. Shkarin. "Time operator for diffusion." Chaos, Solitons & Fractals 11, no. 4 (March 2000): 465–77. http://dx.doi.org/10.1016/s0960-0779(99)00052-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Igbida, Noureddine, and Thi Nguyet Nga Ta. "Sub-gradient diffusion operator." Journal of Differential Equations 262, no. 7 (April 2017): 3837–63. http://dx.doi.org/10.1016/j.jde.2016.11.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cantin, Pierre, and Alexandre Ern. "Vertex-Based Compatible Discrete Operator Schemes on Polyhedral Meshes for Advection-Diffusion Equations." Computational Methods in Applied Mathematics 16, no. 2 (April 1, 2016): 187–212. http://dx.doi.org/10.1515/cmam-2016-0007.

Full text
Abstract:
AbstractWe devise and analyze vertex-based, Péclet-robust, lowest-order schemes for advection-diffusion equations that support polyhedral meshes. The schemes are formulated using Compatible Discrete Operators (CDO), namely, primal and dual discrete differential operators, a discrete contraction operator for advection, and a discrete Hodge operator for diffusion. Moreover, discrete boundary operators are devised to weakly enforce Dirichlet boundary conditions. The analysis sheds new light on the theory of Friedrichs' operators at the purely algebraic level. Moreover, an extension of the stability analysis hinging on inf-sup conditions is presented to incorporate divergence-free velocity fields under some assumptions. Error bounds and convergence rates for smooth solutions are derived and numerical results are presented on three-dimensional polyhedral meshes.
APA, Harvard, Vancouver, ISO, and other styles
5

Vizilter, Y. V., O. V. Vygolov, and S. Y. Zheltov. "Comparison of statistical properties for various morphological filters based on mosaic image shape models." Computer Optics 45, no. 3 (June 2021): 449–60. http://dx.doi.org/10.18287/2412-6179-co-842.

Full text
Abstract:
We consider the statistical properties of different mosaic filters. We demonstrate that in Pitiev's morphology, the measure of shape complexity is directly related to the shape simplicity measure based on morphological correlation coefficient (MCC). Based on MCC, we introduce the normalized morphological simplification index (NMSI). Using NMSI, we show that the simpler the mosaic shape, the more shape simplification is provided by the corresponding Pyt'ev projector. For the examples of mean and median mosaic filters, we address the problem of different operator comparison. In this context we introduce the concept of statistically simplifying morphological operators. Morphological correlation of mosaic shape and diffusion mosaic operator is considered. We prove that the NMSI for the diffusion mosaic operator is not related to the complexity for the corresponding diffusion shape kernel. Thus, a principal qualitative difference in the relationship between relational and operator models for diffuse and projective mosaic linear filters is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
6

Пененко, А. В., and A. V. Penenko. "Numerical Algorithms for Diffusion Coefficient Identification in Problems of Tissue Engineering." Mathematical Biology and Bioinformatics 11, no. 2 (December 22, 2016): 426–44. http://dx.doi.org/10.17537/2016.11.426.

Full text
Abstract:
Identification algorithms of diffusion coefficients in a specimen with tomographic images of the solution penetration dynamics are considered. With the sensitivity operator, built on the basis of adjoint equations for diffusion process model, the corresponding coefficient inverse problem is reduced to the quasilinear operator equation which is then solved by the Newton-type method with successive evaluation of r-pseudo inverse operators of increasing dimensionality. The efficiency of the constructed algorithm is tested in numerical experiments. For comparison, a gradient-based algorithm for the inverse problem solution is considered.
APA, Harvard, Vancouver, ISO, and other styles
7

Ahmed, Nauman, Tahira S.S., M. Rafiq, M. A. Rehman, Mubasher Ali, and M. O. Ahmad. "Positivity preserving operator splitting nonstandard finite difference methods for SEIR reaction diffusion model." Open Mathematics 17, no. 1 (April 29, 2019): 313–30. http://dx.doi.org/10.1515/math-2019-0027.

Full text
Abstract:
Abstract In this work, we will introduce two novel positivity preserving operator splitting nonstandard finite difference (NSFD) schemes for the numerical solution of SEIR reaction diffusion epidemic model. In epidemic model of infection diseases, positivity is an important property of the continuous system because negative value of a subpopulation is meaningless. The proposed operator splitting NSFD schemes are dynamically consistent with the solution of the continuous model. First scheme is conditionally stable while second operator splitting scheme is unconditionally stable. The stability of the diffusive SEIR model is also verified numerically with the help of Routh-Hurwitz stability condition. Bifurcation value of transmission coefficient is also carried out with and without diffusion. The proposed operator splitting NSFD schemes are compared with the well-known operator splitting finite difference (FD) schemes.
APA, Harvard, Vancouver, ISO, and other styles
8

NATAF, F., and F. ROGIER. "FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM." Mathematical Models and Methods in Applied Sciences 05, no. 01 (February 1995): 67–93. http://dx.doi.org/10.1142/s021820259500005x.

Full text
Abstract:
In the original Schwarz algorithm, Dirichlet boundary conditions are used as interface conditions. We consider the use of the operators arising from the factorization of the convection-diffusion operator as transmission conditions. The rate of convergence is then significantly higher. Theoretical results are proven and numerical tests are shown.
APA, Harvard, Vancouver, ISO, and other styles
9

Sat, Murat, and Etibar S. Panakhov. "Spectral problem for diffusion operator." Applicable Analysis 93, no. 6 (July 23, 2013): 1178–86. http://dx.doi.org/10.1080/00036811.2013.821113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Davies, E. B. "An Indefinite Convection-Diffusion Operator." LMS Journal of Computation and Mathematics 10 (2007): 288–306. http://dx.doi.org/10.1112/s1461157000001418.

Full text
Abstract:
AbstractWe give a mathematically rigorous analysis which confirms the surprising results in a recent paper of Benilov, O‘Brien and Sazonov [J. Fluid Mech. 497 (2003) 201-224] about the spectrum of a highly singular non-self-adjoint operator that arises in a problem in fluid mechanics. We also show that the set of eigenvectors does not form a basis for the operator.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Diffusion Operator"

1

Eberle, Andreas. "Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators /." Berlin [u.a.] : Springer, 1999. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=008710353&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thangudu, Kedarnath. "Practicality of Discrete Laplace Operators." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1236615194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bolelli, Maria Virginia. "Diffusion Maps for Dimensionality Reduction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18246/.

Full text
Abstract:
In this thesis we present the diffusion maps, a framework based on diffusion processes for finding meaningful geometric descriptions of data sets. A diffusion process can be described via an iterative application of the heat kernel which has two main characteristics: it satisfies a Markov semigroup property and its level sets encode all geometric features of the space. This process, well known in regular manifolds, has been extended to general data set by Coifman and Lafon. They define a diffusion kernel starting from the geometric properties of the data and their density properties. This kernel will be a compact operator, and the projection on its eigenvectors at different instant of time, provides a family of embeddings of a dataset into a suitable Euclidean space. The projection on the first eigenvectors, naturally leads to a dimensionality reduction algorithm. Numerical implementation is provided on different data set.
APA, Harvard, Vancouver, ISO, and other styles
4

Handler, Matthew Dane. "Development of stable operator splitting numerical algorithms for phase-field modeling and surface diffusion applications." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35068.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2006.
Includes bibliographical references (leaves 35-37).
Implicit, explicit and spectral algorithms were used to create Allen-Cahn and Cahn-Hilliard phase field models. Individual terms of the conservation equations were approached by different methods using operator splitting techniques found in previous literature. In addition, dewetting of gold films due to surface diffusion was modeled to present the extendability and efficiency of the spectral methods derived. The simulations developed are relevant to many real systems and are relatively light in computational load because they take large time steps to drive the model into equilibrium. Results were analyzed by their relevancy to real world applications and further work in this field is outlined.
by Matthew Dane Handler.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
5

Tora, Veronica. "Laplace operator on finite graphs and a network diffusion model for the progression of the Alzheimer disease." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7889/.

Full text
Abstract:
Nella tesi viene descritto il Network Diffusion Model, ovvero il modello di A. Ray, A. Kuceyeski, M. Weiner inerente i meccanismi di progressione della demenza senile. In tale modello si approssima l'encefalo sano con una rete cerebrale (ovvero un grafo pesato), si identifica un generale fattore di malattia e se ne analizza la propagazione che avviene secondo meccanismi analoghi a quelli di un'infezione da prioni. La progressione del fattore di malattia e le conseguenze macroscopiche di tale processo(tra cui principalmente l'atrofia corticale) vengono, poi, descritte mediante approccio matematico. I risultati teoretici vengono confrontati con quanto osservato sperimentalmente in pazienti affetti da demenza senile. Nella tesi, inoltre, si fornisce una panoramica sui recenti studi inerenti i processi neurodegenerativi e si costruisce il contesto matematico di riferimento del modello preso in esame. Si presenta una panoramica sui grafi finiti, si introduce l'operatore di Laplace sui grafi e si forniscono stime dall'alto e dal basso per gli autovalori. Al fine di costruire una cornice matematica completa si analizza la relazione tra caso discreto e continuo: viene descritto l'operatore di Laplace-Beltrami sulle varietà riemanniane compatte e vengono fornite stime dall'alto per gli autovalori dell'operatore di Laplace-Beltrami associato a tali varietà a partire dalle stime dall'alto per gli autovalori del laplaciano sui grafi finiti.
APA, Harvard, Vancouver, ISO, and other styles
6

Khochman, Abdallah. "Résonances et diffusion pour les opérateurs de Dirac et de Schrödinger magnétique." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13689/document.

Full text
Abstract:
Le sujet de cette thèse est l’étude de certaines équations de physique mathématique. Dans un premier temps, on étudie les résonances et la fonction de décalage spectral pour les opérateurs de Dirac semi-classique et de Schrödinger magnétique en dimension 3. On dé?nit les résonances comme des valeurs propres d’un opérateur non-autoadjoint obtenu par distortion complexe. Pour l’opérateur de Dirac, on majore le nombre de résonances par O(h-3) où h ? 0 est le paramètre semi-classique. Dans le cas de Schrödinger magnétique, l’opérateur de référence génère des valeurs propres de multipli- cité in?nie plongées dans le spectre continu. Dans une couronne centrée en une de ces valeurs propres et de rayons (r, 2r), on établit une borne supérieure, quand r ? 0, du nombre de résonances. Une approximation de type Breit-Wigner de la dérivée de la fonction de décalage spectral en fonction des résonances et une formule de trace locale sont obtenues pour ces deux opérateurs. De plus, on prouve une formule asymptotique de Weyl pour la fonction de décalage spectral pour l’opérateur de Dirac avec un potentiel électro-magnétique. Dans un deuxième temps, on s’intéresse à l’opérateur de Dirac semi-classique en dimension 1 avec un potentiel ayant des limites constantes mais pas nécessairement les mêmes à ±8. En utilisant la méthode BKW complexe, on construit des solutions analytiques de l’opérateur de Dirac. On étudie la théorie de la di?usion en fonction des solutions entrantes et sortantes. On obtient une asymptotique semi-classique de la matrice de di?usion dans di?érents cas, notamment dans le cas où le paradoxe de Klein apparaît. Le calcul des valeurs propres et des résonances est aussi traité pour l’opérateur de Dirac semi-classique unidimensionnel
In this thesis, we consider equations of mathematical physics. First, we study the reso- nances and the spectral shift function for the semi-classical Dirac operator and the magnetic Schrö- dinger operator in three dimensions. We de?ne the resonances as the eigenvalues of a non-selfadjoint operator obtained by complex distortion. For the Dirac operator, we establish an upper bound O(h-3), as the semi-classical parameter h tends to 0, for the number of resonances. In the Schrödinger magne- tic case, the reference operator has in?nitely many eigenvalues of in?nite multiplicity embedded in its continuous spectrum. In a ring centered at one of this eigenvalues with radiuses (r, 2r), we establish an upper bound, as r tends to 0, of the number of the resonances. A Breit-Wigner approximation formula for the derivative of the spectral shift function related to the resonances and a local trace formula are obtained for the considered operators. Moreover, we prove a Weyl-type asymptotic of the SSF for the Dirac operator with an electro-magnetic potential. Secondly, we consider the semi-classical Dirac ope- rator on R with potential having constant limits, not necessarily the same at ±8. Using the complex WKB method, we construct analytic solutions for the Dirac operator. We study the scattering theory in terms of incoming and outgoing solutions. We obtain an asymptotic expansion, with respect to the semi-classical parameter h, of the scattering matrix in di?erent cases, in particular, in the case when the Klein paradox occurs. Quantization conditions for the resonances and for the eigenvalues of the one-dimensional Dirac operator are also obtained
APA, Harvard, Vancouver, ISO, and other styles
7

Zhuang, Qiao. "Immersed Finite Elements for a Second Order Elliptic Operator and Their Applications." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99040.

Full text
Abstract:
This dissertation studies immersed finite elements (IFE) for a second order elliptic operator and their applications to interface problems of related partial differential equations. We start with the immersed finite element methods for the second order elliptic operator with a discontinuous coefficient associated with the elliptic interface problems. We introduce an energy norm stronger than the one used in [111]. Then we derive an estimate for the IFE interpolation error with this energy norm using patches of interface elements. We prove both the continuity and coercivity of the bilinear form in a partially penalized IFE (PPIFE) method. These properties allow us to derive an error bound for the PPIFE solution in the energy norm under the standard piecewise $H^2$ regularity assumption instead of the more stringent $H^3$ regularity used in [111]. As an important consequence, this new estimation further enables us to show the optimal convergence in the $L^2$ norm which could not be done by the analysis presented in [111]. Then we consider applications of IFEs developed for the second order elliptic operator to wave propagation and diffusion interface problems. The first application is for the time-harmonic wave interface problem that involves the Helmholtz equation with a discontinuous coefficient. We design PPIFE and DGIFE schemes including the higher degree IFEs for Helmholtz interface problems. We present an error analysis for the symmetric linear/bilinear PPIFE methods. Under the standard piecewise $H^2$ regularity assumption for the exact solution, following Schatz's arguments, we derive optimal error bounds for the PPIFE solutions in both an energy norm and the usual $L^2$ norm provided that the mesh size is sufficiently small. {In the second group of applications, we focus on the error analysis for IFE methods developed for solving typical time-dependent interface problems associated with the second order elliptic operator with a discontinuous coefficient.} For hyperbolic interface problems, which are typical wave propagation interface problems, we reanalyze the fully-discrete PPIFE method in [143]. We derive the optimal error bounds for this PPIFE method for both an energy norm and the $L^2$ norm under the standard piecewise $H^2$ regularity assumption in the space variable of the exact solution. Simulations for standing and travelling waves are presented to corroborate the results of the error analysis. For parabolic interface problems, which are typical diffusion interface problems, we reanalyze the PPIFE methods in [113]. We prove that these PPIFE methods have the optimal convergence not only in an energy norm but also in the usual $L^2$ norm under the standard piecewise $H^2$ regularity.
Doctor of Philosophy
This dissertation studies immersed finite elements (IFE) for a second order elliptic operator and their applications to a few types of interface problems. We start with the immersed finite element methods for the second order elliptic operator with a discontinuous coefficient associated with the elliptic interface problem. We can show that the IFE methods for the elliptic interface problems converge optimally when the exact solution has lower regularity than that in the previous publications. Then we consider applications of IFEs developed for the second order elliptic operator to wave propagation and diffusion interface problems. For interface problems of the Helmholtz equation which models time-Harmonic wave propagations, we design IFE schemes, including higher degree schemes, and derive error estimates for a lower degree scheme. For interface problems of the second order hyperbolic equation which models time dependent wave propagations, we derive better error estimates for the IFE methods and provides numerical simulations for both the standing and traveling waves. For interface problems of the parabolic equation which models the time dependent diffusion, we also derive better error estimates for the IFE methods.
APA, Harvard, Vancouver, ISO, and other styles
8

Hachem, Ghias. "Théorie spectrale de l'opérateur de Dirac avec un potentiel électromagnétique à croissance linéaire à l'infini." Paris 13, 1988. http://www.theses.fr/1988PA132008.

Full text
Abstract:
L'objet de cette thèse est la théorie spectrale de l'opérateur de Dirac associé à un champ électrique extérieur. Notre approche est celle de la théorie de la diffusion. Dans un premier temps on étudie l'opérateur non perturbe dont le potentiel est une fonction linéaire d'une variable (champ électrique constant). On construit alors les fonctions propres généralisées de cet opérateur, pour cela on étudie une équation différentielle du second ordre dépendant d'un paramètre. On donne ensuite des estimations pour les fonctions propres généralisées et le théorème d'absorption limite. Dans la deuxième partie on étudie les perturbations de cet opérateur de base par des potentiels de courte portée, on donne une description du spectre de ces opérateurs, on obtient la représentation spectrale de ces opérateurs ainsi que des estimations montrant la décroissance dans le temps des états de diffusion.
APA, Harvard, Vancouver, ISO, and other styles
9

Ta, Thi nguyet nga. "Sub-gradient diffusion equations." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0137/document.

Full text
Abstract:
Ce mémoire de thèse est consacrée à l'étude des problèmes d'évolution où la dynamique est régi par l'opérateur de diffusion de sous-gradient. Nous nous intéressons à deux types de problèmes d'évolution. Le premier problème est régi par un opérateur local de type Leray-Lions avec un domaine borné. Dans ce problème, l'opérateur est maximal monotone et ne satisfait pas la condition standard de contrôle de la croissance polynomiale. Des exemples typiques apparaît dans l'étude de fluide non-Neutonian et aussi dans la description de la dynamique du flux de sous-gradient. Pour étudier le problème nous traitons l'équation dans le contexte de l'EDP non linéaire avec le flux singulier. Nous utilisons la théorie de gradient tangentiel pour caractériser l'équation d'état qui donne la relation entre le flux et le gradient de la solution. Dans le problème stationnaire, nous avons l'existence de la solution, nous avons également l'équivalence entre le problème minimisation initial, le problème dual et l'EDP. Dans l'équation de l'évolution, nous proposons l'existence, l'unicité de la solution. Le deuxième problème est régi par un opérateur discret. Nous étudions l'équation d'évolution discrète qui décrivent le processus d'effondrement du tas de sable. Ceci est un exemple typique de phénomènes auto-organisés critiques exposées par une slope critique. Nous considérons l'équation d'évolution discrète où la dynamique est régie par sous-gradient de la fonction d'indicateur de la boule unité. Nous commençons par établir le modèle, nous prouvons existence et l'unicité de la solution. Ensuite, en utilisant arguments de dualité nous étudions le calcul numérique de la solution et nous présentons quelques simulations numériques
This thesis is devoted to the study of evolution problems where the dynamic is governed by sub-gradient diffusion operator. We are interest in two kind of evolution problems. The first problem is governed by local operator of Leray-Lions type with a bounded domain. In this problem, the operator is maximal monotone and does not satisfied the standard polynomial growth control condition. Typical examples appears in the study of non-Neutonian fluid and also in the description of sub-gradient flows dynamics. To study the problem we handle the equation in the context of nonlinear PDE with singular flux. We use the theory of tangential gradient to characterize the state equation that gives the connection between the flux and the gradient of the solution. In the stationary problem, we have the existence of solution, we also get the equivalence between the initial minimization problem, the dual problem and the PDE. In the evolution one, we provide the existence, uniqueness of solution and the contractions. The second problem is governed by a discrete operator. We study the discrete evolution equation which describe the process of collapsing sandpile. This is a typical example of Self-organized critical phenomena exhibited by a critical slop. We consider the discrete evolution equation where the dynamic is governed by sub-gradient of indicator function of the unit ball. We begin by establish the model, we prove existence and uniqueness of the solution. Then by using dual arguments we study the numerical computation of the solution and we present some numerical simulations
APA, Harvard, Vancouver, ISO, and other styles
10

Rieux, Frédéric. "Processus de diffusion discret : opérateur laplacien appliqué à l'étude de surfaces." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20201/document.

Full text
Abstract:
Le contexte est la géométrie discrète dans Zn. Il s'agit de décrire les courbes et surfaces discrètes composées de voxels: les définitions usuelles de droites et plans discrets épais se comportent mal quand on passe à des ensembles courbes. Comment garantir un bon comportement topologique, les connexités requises, dans une situation qui généralise les droites et plans discrets?Le calcul de données sur ces courbes, normales, tangentes, courbure, ou des fonctions plus générales, fait appel à des moyennes utilisant des masques. Une question est la pertinence théorique et pratique de ces masques. Une voie explorée, est le calcul de masques fondés sur la marche aléatoire. Une marche aléatoire partant d'un centre donné sur une courbe ou une surface discrète, permet d'affecter à chaque autre voxel un poids, le temps moyen de visite. Ce noyau permet de calculer des moyennes et par là, des dérivées. L'étude du comportement de ce processus de diffusion, a permis de retrouver des outils classiques de géométrie sur des surfaces maillées, et de fournir des estimateurs de tangente et de courbure performants. La diversité du champs d'applications de ce processus de diffusion a été mise en avant, retrouvant ainsi des méthodes classiques mais avec une base théorique identique.} motsclefs{Processus Markovien, Géométrie discrète, Estimateur tangentes, normales, courbure, Noyau de diffusion, Analyse d'images
The context of discrete geometry is in Zn. We propose to discribe discrete curves and surfaces composed of voxels: how to compute classical notions of analysis as tangent and normals ? Computation of data on discrete curves use average mask. A large amount of works proposed to study the pertinence of those masks. We propose to compute an average mask based on random walk. A random walk starting from a point of a curve or a surface, allow to give a weight, the time passed on each point. This kernel allow us to compute average and derivative. The studied of this digital process allow us to recover classical notions of geometry on meshes surfaces, and give accuracy estimator of tangent and curvature. We propose a large field of applications of this approach recovering classical tools using in transversal communauty of discrete geometry, with a same theorical base
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Diffusion Operator"

1

Reddy, Satish C. Pseudospectra of the convection-diffusion operator. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Löbus, Jörg-Uwe. Generalized diffusion operators. Berlin: Akademie Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Andreu-Vaillo, Fuensanta. Nonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Montseny, Gérard. Représentation diffusive. Paris: Hermès science, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Diffusions and elliptic operators. New York: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

G, Pinsky Ross. Positive harmonic functions and diffusion. New York: Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Long, Hongwei. Symmetric diffusion operators on infinite dimensional spaces. [s.l.]: typescript, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bakry, Dominique, Ivan Gentil, and Michel Ledoux. Analysis and Geometry of Markov Diffusion Operators. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00227-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Taira, Kazuaki. Diffusion processes and partial differential equations. Boston: Academic Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Diffusion Operator"

1

Bátkai, András, Marjeta Kramar Fijavž, and Abdelaziz Rhandi. "Population Equations with Diffusion." In Positive Operator Semigroups, 303–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42813-0_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morra, Gabriele. "Laplacian Operator and Diffusion." In Lecture Notes in Earth System Sciences, 143–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55682-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Melnikov, Alexander, and Hongxi Wan. "CVaR Hedging in Defaultable Jump-Diffusion Markets." In Operator Theory and Harmonic Analysis, 309–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76829-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Colombo, Fabrizio, and Jonathan Gantner. "The Quaternionic Evolution Operator." In Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes, 105–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16409-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Grudsky, S. M., and O. A. Mendez-Lara. "Double-Barrier Option Pricing Under the Hyper-Exponential Jump Diffusion Model." In Operator Theory and Harmonic Analysis, 197–217. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76829-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guebbaï, H., and A. Largillier. "Spectra and Pseudospectra of a Convection–Diffusion Operator." In Integral Methods in Science and Engineering, 173–80. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8238-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bertsch, Michiel, and Roberta Dal Passo. "A Parabolic Equation with a Mean-Curvature Type Operator." In Nonlinear Diffusion Equations and Their Equilibrium States, 3, 89–97. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0393-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bobrowski, Adam. "Families of Operators Describing Diffusion Through Permeable Membranes." In Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, 87–105. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18494-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Robinson, Derek W. "Gaussian and non-Gaussian Behaviour of Diffusion Processes." In Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, 463–81. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18494-4_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cranston, Michael C., and Zhongxin Zhao. "Some Regularity Results and Eigenfunction Estimates for the Schrödinger Operator." In Diffusion Processes and Related Problems in Analysis, Volume I, 139–47. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4684-0564-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Diffusion Operator"

1

Ratner, Vadim, and Yehoshua Y. Zeevi. "Telegraph-Diffusion Operator for Image Enhancement." In 2007 IEEE International Conference on Image Processing. IEEE, 2007. http://dx.doi.org/10.1109/icip.2007.4379007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moen, Christopher. "Controlling negative coefficients for the CVFEM diffusion operator." In 29th AIAA, Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-3008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ladics, Tamás. "Application of operator splitting to solve reaction-diffusion equations." In The 9'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2012. http://dx.doi.org/10.14232/ejqtde.2012.3.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yi, and Xiaozhong Yang. "Accelerated Additive Operator Splitting Schemes for Nonlinear Diffusion Filtering." In 2010 International Conference on Biomedical Engineering and Computer Science (ICBECS). IEEE, 2010. http://dx.doi.org/10.1109/icbecs.2010.5462498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Siyuan, and Zhixing Huang. "A Gossip-based Opinion Diffusion Model via Uninorm Aggregation Operator." In 2008 International Symposium on Electronic Commerce and Security. IEEE, 2008. http://dx.doi.org/10.1109/isecs.2008.224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cloninger, Alexander, Wojciech Czaja, and Timothy Doster. "Operator analysis and diffusion based embeddings for heterogeneous data fusion." In IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6946659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Atkins, H., and Chi-Wang Shu. "Analysis of the discontinuous Galerkin method applied to the diffusion operator." In 14th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weng, Guirong. "cDNA Microarray Image Processing Using Morphological Operator and Edge-Enhancing Diffusion." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2009). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rendon, Juan, Marcos Capistran, and Bruno Lara. "A Discrete Reaction-Diffusion Operator for Moving Curves and Edge Detection." In Electronics, Robotics and Automotive Mechanics Conference (CERMA'06). IEEE, 2006. http://dx.doi.org/10.1109/cerma.2006.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hauge, V. L., J. E. Aarnes, and K. A. Lie. "Operator Splitting of Advection and Diffusion on Non-uniformly Coarsened Grids." In 11th European Conference on the Mathematics of Oil Recovery. Netherlands: EAGE Publications BV, 2008. http://dx.doi.org/10.3997/2214-4609.20146392.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Diffusion Operator"

1

Roberts, R. M. Hexahedron, wedge, tetrahedron, and pyramid diffusion operator discretization. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/442193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Winters, Andrew R. Support Operators Method for the Diffusion Equation in Multiple Materials. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1048864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Winters, Andrew R., and Mikhail J. Shashkov. Support Operators Method for the Diffusion Equation in Multiple Materials. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1048859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Trowbridge, L. D. Long-range global warming impact of gaseous diffusion plant operation. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10156151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baral, Aniruddha, Jeffrey Roesler, M. Ley, Shinhyu Kang, Loren Emerson, Zane Lloyd, Braden Boyd, and Marllon Cook. High-volume Fly Ash Concrete for Pavements Findings: Volume 1. Illinois Center for Transportation, September 2021. http://dx.doi.org/10.36501/0197-9191/21-030.

Full text
Abstract:
High-volume fly ash concrete (HVFAC) has improved durability and sustainability properties at a lower cost than conventional concrete, but its early-age properties like strength gain, setting time, and air entrainment can present challenges for application to concrete pavements. This research report helps with the implementation of HVFAC for pavement applications by providing guidelines for HVFAC mix design, testing protocols, and new tools for better quality control of HVFAC properties. Calorimeter tests were performed to evaluate the effects of fly ash sources, cement–fly ash interactions, chemical admixtures, and limestone replacement on the setting times and hydration reaction of HVFAC. To better target the initial air-entraining agent dosage for HVFAC, a calibration curve between air-entraining dosage for achieving 6% air content and fly ash foam index test has been developed. Further, a digital foam index test was developed to make this test more consistent across different labs and operators. For a more rapid prediction of hardened HVFAC properties, such as compressive strength, resistivity, and diffusion coefficient, an oxide-based particle model was developed. An HVFAC field test section was also constructed to demonstrate the implementation of a noncontact ultrasonic device for determining the final set time and ideal time to initiate saw cutting. Additionally, a maturity method was successfully implemented that estimates the in-place compressive strength of HVFAC through wireless thermal sensors. An HVFAC mix design procedure using the tools developed in this project such as the calorimeter test, foam index test, and particle-based model was proposed to assist engineers in implementing HVFAC pavements.
APA, Harvard, Vancouver, ISO, and other styles
6

Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/219097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/71517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography