Dissertations / Theses on the topic 'Diffusion equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Diffusion equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ta, Thi nguyet nga. "Sub-gradient diffusion equations." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0137/document.
Full textThis thesis is devoted to the study of evolution problems where the dynamic is governed by sub-gradient diffusion operator. We are interest in two kind of evolution problems. The first problem is governed by local operator of Leray-Lions type with a bounded domain. In this problem, the operator is maximal monotone and does not satisfied the standard polynomial growth control condition. Typical examples appears in the study of non-Neutonian fluid and also in the description of sub-gradient flows dynamics. To study the problem we handle the equation in the context of nonlinear PDE with singular flux. We use the theory of tangential gradient to characterize the state equation that gives the connection between the flux and the gradient of the solution. In the stationary problem, we have the existence of solution, we also get the equivalence between the initial minimization problem, the dual problem and the PDE. In the evolution one, we provide the existence, uniqueness of solution and the contractions. The second problem is governed by a discrete operator. We study the discrete evolution equation which describe the process of collapsing sandpile. This is a typical example of Self-organized critical phenomena exhibited by a critical slop. We consider the discrete evolution equation where the dynamic is governed by sub-gradient of indicator function of the unit ball. We begin by establish the model, we prove existence and uniqueness of the solution. Then by using dual arguments we study the numerical computation of the solution and we present some numerical simulations
Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.
Full textEsta tesis se centra en el comportamiento en tiempos grandes de las soluciones de la ecuación de Fisher- KPP de reacción-difusión con difusión fraccionaria. Este tipo de ecuación surge, por ejemplo, en la propagación espacial o en la propagación de especies biológicas (ratas, insectos,...). En la dinámica de poblaciones, la cantidad que se estudia representa la densidad de la población. Es conocido que, bajo algunas hipótesis específicas, la solución tiende a un estado estable del problema de evolución, cuando el tiempo tiende a infinito. En otras palabras, la población invade el medio, lo que corresponde a la supervivencia de la especie, y nosotros queremos entender con qué velocidad se lleva a cabo esta invasión. Para responder a esta pregunta, hemos creado un nuevo método para estudiar la velocidad de propagación cuando se consideran difusiones fraccionarias, además hemos aplicado este método en tres problemas diferentes. La Parte I de la tesis está dedicada al análisis de la ubicación asintótica de los conjuntos de nivel de la solución de dos problemas diferentes: modelos de Fisher- KPP en medios periódicos y sistemas cooperativos, ambos consideran difusión fraccionaria. En el primer modelo, se prueba que, bajo ciertas hipótesis sobre el medio periódico, la solución se propaga exponencialmente rápido en el tiempo, además encontramos el exponente exacto que aparece en esta velocidad de propagación exponencial. También llevamos a cabo simulaciones numéricas para investigar la dependencia de la velocidad de propagación con la condición inicial. En el segundo modelo, se prueba que la velocidad de propagación es nuevamente exponencial en el tiempo, con un exponente que depende del índice más pequeño de los Laplacianos fraccionarios y también del término de reacción. La Parte II de la tesis ocurre en un entorno de dos dimensiones, donde se reproduce un tipo ecuación de Fisher- KPP con difusión estándar, excepto en una línea del plano, en el que la difusión fraccionada aparece. El plano será llamado "campo" y la línea "camino", como una referencia a las situaciones biológicas que tenemos en mente. De hecho, desde hace tiempo se sabe que la difusión rápida en los caminos puede causar un efecto en la propagación de epidemias. Probamos que la velocidad de propagación es exponencial en el tiempo en el camino, mientras que depende linealmente del tiempo en el campo. Contrariamente a los precisos exponentes obtenidos en la Parte I, para este modelo, no fuimos capaces de dar una localización exacta de los conjuntos de nivel en la carretera y en el campo. La forma de propagación de los conjuntos de nivel en el campo se investiga a través de simulaciones numéricas
Prehl, Janett. "Diffusion on fractals and space-fractional diffusion equations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001068.
Full textThe aim of this thesis is the examination of sub- and superdiffusive processes in fractal structures. The focus of the work concentrates on two separate approaches that are chosen and varied according to the corresponding regime. Thus, we obtain new insights about the underlying mechanisms and a more appropriate way of description for both regimes. In the first part subdiffusion is considered, which plays a crucial role for transport processes, as in living tissues. First, we model the fractal state space via finite Sierpinski carpets with absorbing boundary conditions and we solve the master equation to compute the time development of the probability distribution. To characterize the diffusion on regular as well as random carpets we determine the longest decay time of the probability distribution, the mean exit time and the Random walk dimension. Thus, we can verify the influence of random structures on the diffusive dynamics. In the second part of this thesis superdiffusive processes are studied by means of the diffusion equation. Its second order space derivative is extended to fractional order, which represents the fractal properties of the surrounding media. The resulting space-fractional diffusion equations span a linking regime from the irreversible diffusion equation to the reversible (half) wave equation. The corresponding solutions are analyzed by different entropies, as the Shannon, Tsallis or Rényi entropies and their entropy production rates, which are natural measures of irreversibility. We find an entropy production paradox, i. e. an unexpected increase of the entropy production rate by decreasing irreversibility of the processes. Due to an appropriate rescaling of the entropy we are able to resolve the paradox
Fei, Ning Fei. "Studies in reaction-diffusion equations." Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/310.
Full textGrant, Koryn. "Symmetries and reaction-diffusion equations." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264601.
Full textNinomiya, Hirokazu. "Separatrices of competition-diffusion equations." 京都大学 (Kyoto University), 1995. http://hdl.handle.net/2433/187159.
Full textKyoto Journal of Mathematics, vol35(3), pp.539-567, 1995, http://projecteuclid.org/euclid.kjm/1250518709
Kyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第5884号
理博第1591号
新制||理||889(附属図書館)
UT51-95-D203
京都大学大学院工学研究科数学専攻
(主査)教授 西田 孝明, 教授 渡辺 信三, 教授 岩崎 敷久
学位規則第4条第1項該当
Coulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.
Full textThis thesis focuses on the long time behaviour, and more precisely on fast propagation, in Fisher-KPP reaction diffusion equations involving fractional diffusion. This type of equation arises, for example, in spreading of biological species. Under some specific assumptions, the population invades the medium and we want to understand at which speed this invasion takes place when fractional diffusion is at stake. To answer this question, we set up a new method and apply it on different models. In a first part, we study two different problems, both including fractional diffusion : Fisher-KPP models in periodic media and cooperative systems. In both cases, we prove, under additional assumptions, that the solution spreads exponentially fast in time and we find the precise exponent of propagation. We also carry out numerical simulations to investigate the dependence of the speed of propagation on the initial condition. In a second part, we deal with a two dimensional environment, where reproduction of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which fractional diffusion takes place. The plane is referred to as "the field" and the line to "the road", as a reference to the biological situations we have in mind. We prove that the speed of propagation is exponential in time on the road, whereas it depends linearly on time in the field. The expansion shape of the level sets in the field is investigated through numerical simulations
Knaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.
Full textCoville, Jerome. "Equations de reaction diffusion non-locale." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004313.
Full textCifani, Simone. "On nonlinear fractional convection - diffusion equations." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15192.
Full textLunney, Michael E. "Numerical dynamics of reaction-diffusion equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ61659.pdf.
Full textBradshaw-Hajek, Bronwyn. "Reaction-diffusion equations for population genetics." Access electronically, 2004. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20041221.160902/index.html.
Full textParvin, S. "Diffusion-convection problems in parabolic equations." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382761.
Full textCoville, Jérôme. "Equations de réaction-diffusion non-locale." Paris 6, 2003. https://tel.archives-ouvertes.fr/tel-00004313.
Full textCinti, Eleonora <1982>. "Bistable elliptic equations with fractional diffusion." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3073/1/Cinti-Eleonora-Tesi.pdf.
Full textCinti, Eleonora <1982>. "Bistable elliptic equations with fractional diffusion." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3073/.
Full textEndal, Jørgen. "Nonlinear fractional convection-diffusion equations, with nonlocal and nonlinear fractional diffusion." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22955.
Full textSun, Xiaodi. "Metastable dynamics of convection-diffusion-reaction equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0002/NQ34630.pdf.
Full textDavidson, Fordyce A. "Bifurcation in systems of reaction-diffusion equations." Thesis, Heriot-Watt University, 1993. http://hdl.handle.net/10399/1444.
Full textFreitas, Pedro S. C. de. "Some problems in nonlocal reaction-diffusion equations." Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1401.
Full textYu, Weiming. "Identification of Coefficients in Reaction-Diffusion Equations." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1076186036.
Full textAl-Ofl, Abdalaziz Saleem. "Analysis of complex nonlinear reaction-diffusion equations." Thesis, Durham University, 2008. http://etheses.dur.ac.uk/2422/.
Full textCardanobile, Stefano. "Diffusion systems and heat equations on networks." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-64278.
Full textHagberg, Aric Arild. "Fronts and patterns in reaction-diffusion equations." Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186901.
Full textBüger, Matthias. "Systems of reaction-diffusion equations and their attractors." Giessen : Selbstverlag des Mathematischen Instituts, 2005. http://catalog.hathitrust.org/api/volumes/oclc/62216537.html.
Full textMeiler, Maria. "Analytic advances in difference equations of diffusion processes /." Göttingen : Sierke, 2009. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017611057&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textLin, Xue Lei. "Separable preconditioner for time-space fractional diffusion equations." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691377.
Full textSionoid, Peadar N. "Nonlinear wave equations with diffusion, diffraction and dispersion." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319935.
Full textXu, Lu. "Large deviations technique on stochastic reaction-diffusion equations." Thesis, University of Warwick, 2008. http://wrap.warwick.ac.uk/2736/.
Full textMeiler, Maria. "Analytic advances in difference equations of diffusion processes." Göttingen Sierke, 2008. http://d-nb.info/992791685/04.
Full textFerguson, R. C. "Numerical techniques for the drift-diffusion semiconductor equations." Thesis, University of Bath, 1996. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362239.
Full textCarter, David, Boguslaw Kruczek, and F. Handan Tezel. "Application of Maxwell Stefan equations to characterize silicalite membranes." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-198056.
Full textDing, Weiwei. "Propagation phenomena of integro-difference equations and bistable reaction-diffusion equations in periodic habitats." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4737.
Full textThis dissertation is concerned with propagation phenomena of some evolution equations in periodic habitats. The main results consist of the following two parts. In the first part, we investigate the spatial spreading phenomena of some spatially periodic integro-difference equations. Firstly, we establish a general theory on the existence of spreading speeds for noncompact evolution systems, under the hypothesis that the linearized systems have principal eigenvalues. Secondly, we introduce the notion of uniform irreducibility for finite Radon measures on the circle. It is shown that, any generalized convolution operator generated by such a measure admits a principal eigenvalue. Finally, applying the above general theories, we prove the existence of spreading speeds for some integro-difference equations with uniformly irreducible dispersal kernels. In the second part, we study the front propagation phenomena of spatially periodic reaction-diffusion equations with bistable nonlinearities. Firstly, we focus on the propagation solutions in the class of pulsating fronts. It is proved that, under various assumptions on the reaction terms, pulsating fronts exist when the spatial period is small or large. We also characterize the sign of the front speeds and we show the global exponential stability of the pulsating fronts with nonzero speed. Secondly, we investigate the propagation solutions in the larger class of transition fronts. It is shown that, under suitable assumptions, transition fronts are reduced to pulsating fronts with nonzero speed. But we also prove the existence of new types of transition fronts which are not pulsating fronts
Wei, Hui Qin. "Preconditioners for solving fractional diffusion equations with discontinuous coefficients." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691375.
Full textFilho, Sergio Muniz Oliva. "Reaction-diffusion systems on domains with thin channels." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/28837.
Full textMeral, Gulnihal. "Numerical Solution Of Nonlinear Reaction-diffusion And Wave Equations." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610568/index.pdf.
Full textRyan, John Maurice-Car. "Global existence of reaction-diffusion equations over multiple domains." Texas A&M University, 2004. http://hdl.handle.net/1969.1/3312.
Full textWang, Shuyu. "Reaction-diffusion equations and the Laplacian in Hilbert space." Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5772.
Full textBaugh, James Emory. "Group analysis of a system of reaction-diffusion equations." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/28554.
Full textHill, Adrian T. "Attractors for convection-diffusion equations and their numerical approximation." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314907.
Full textQu, Lei, and 瞿磊. "Multiplicity and stability of two-dimensional reaction-diffusion equations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31226656.
Full textFullwood, Timothy Brent. "Pattern formation and travelling waves in reaction-diffusion equations." Thesis, University of Warwick, 1995. http://wrap.warwick.ac.uk/4251/.
Full textKay, Alison Lindsey. "Travelling fronts and wave-trains in reaction-diffusion equations." Thesis, University of Warwick, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342513.
Full textVafadari, Cyrus. "Monte Carlo methods for parallel processing of diffusion equations." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82451.
Full text"June 2013." Cataloged from PDF version of thesis.
Includes bibliographical references (page 14).
A Monte Carlo algorithm for solving simple linear systems using a random walk is demonstrated and analyzed. The described algorithm solves for each element in the solution vector independently. Furthermore, it is demonstrated that this algorithm is easily parallelized. To reduce error, each processor can compute data for an independent element of the solution, or part of the data for a given element for the solution, allowing for larger samples to decrease stochastic error. In addition to parallelization, it is also shown that a probabilistic chain termination can decrease the runtime of the algorithm while maintaining accuracy. Thirdly, a tighter lower bound for the required number of chains given a desired error is determined.
by Cyrus Vafadari.
S.B.
Zimmermann, Nils E. R., Timm J. Zabel, and Frerich J. Keil. "Transport into zeolite nanosheets: diffusion equations put to test." Diffusion fundamentals 20 (2013 ) 53, S. 1-2, 2013. https://ul.qucosa.de/id/qucosa%3A13629.
Full textNadin, Grégoire. "Equations de réaction-diffusion et propagation en milieu hétérogène." Paris 6, 2008. http://www.theses.fr/2008PA066491.
Full textTrojan, Alice von. "Finite difference methods for advection and diffusion." Title page, abstract and contents only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phv948.pdf.
Full textHoward, Martin. "Non-equilibrium dynamics of reaction-diffusion systems." Thesis, University of Oxford, 1996. http://ora.ox.ac.uk/objects/uuid:4485a178-6262-4487-b40f-7c7ec790d687.
Full textManay, Siddharth. "Applications of anti-geometric diffusion of computer vision : thresholding, segmentation, and distance functions." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/33626.
Full textCarter, David, Boguslaw Kruczek, and F. Handan Tezel. "Application of Maxwell Stefan equations to characterize silicalite membranes." Diffusion fundamentals 24 (2015) 8, S. 1, 2015. https://ul.qucosa.de/id/qucosa%3A14522.
Full text