To see the other types of publications on this topic, follow the link: Diffusion equations.

Books on the topic 'Diffusion equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Diffusion equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Seizō, Itō. Diffusion equations. Providence, R.I: American Mathematical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Favini, Angelo. Degenerate Nonlinear Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Favini, Angelo, and Gabriela Marinoschi. Degenerate Nonlinear Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28285-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Masao, Nagasawa. Schrödinger equations and diffusion theory. Basel: Birkhäuser Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nagasawa, Masao. Schrödinger Equations and Diffusion Theory. Basel: Springer Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-0560-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nagasawa, Masao. Schrödinger Equations and Diffusion Theory. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8568-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lam, King-Yeung, and Yuan Lou. Introduction to Reaction-Diffusion Equations. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20422-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1955-, Caristi Gabriella, and Mitidieri Enzo, eds. Reaction diffusion systems. New York: Marcel Dekker, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shock waves and reaction-diffusion equations. 2nd ed. New York: Springer-Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ikeda, Nobuyuki. Stochastic differential equations and diffusion processes. 2nd ed. Amsterdam: North-Holland Pub. Co., 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Taira, Kazuaki. Diffusion processes and partial differential equations. Boston: Academic Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Smoller, Joel. Shock Waves and Reaction—Diffusion Equations. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0873-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Selvadurai, A. P. S. Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Andreu-Vaillo, Fuensanta. Nonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Richard, Ghez, ed. Diffusion phenomena: Cases and studies. 2nd ed. New York: Kluwer Academic/Plenum Publishers, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

author, Durrett Richard 1951, Perkins, Edwin Arend, 1953- author, and Société mathématique de France, eds. Voter model perturbations and reaction diffusion equations. Paris: Societé mathématique de France, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mei, Zhen. Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04177-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mei, Zhen. Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Eberle, Andreas. Uniqueness and non-uniqueness of singular diffusion operators. Berlin: Springer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Toro, E. F. Viscous limiter functions for model convection-diffusion equations. Cranfield, Bedford, England: Cranfield Institute of Technology, College of Aeronautics, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Reaction-diffusion equations and their applications to biology. London: Academic Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cai, Xiao-Chuan. Local multiplicative Schwarz algorithms for convection-diffusion equations. Hampton, Va: Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lloyd, N. G., W. M. Ni, L. A. Peletier, and J. Serrin, eds. Nonlinear Diffusion Equations and Their Equilibrium States, 3. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0393-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ni, W. M., L. A. Peletier, and James Serrin, eds. Nonlinear Diffusion Equations and Their Equilibrium States I. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4613-9605-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ni, W. M., L. A. Peletier, and James Serrin, eds. Nonlinear Diffusion Equations and Their Equilibrium States II. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-9608-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Seizō, Itō. Diffusion equations: Seizō Itō ; translated by Seizō Itō. Providence, R.I: American Mathematical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Inc, ebrary, and International Conference on Reaction-Diffusion Systems and Viscosity Solutions (2007 : Providence University), eds. Recent progress on reaction-diffusion systems and viscosity solutions. Hackensack, NJ: World Scientific, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Patterns and waves: The theory and applications of reaction-diffusion equations. Oxford: Clarendon Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Grindrod, Peter. The theory and applications of reaction-diffusion equations: Patterns and waves. 2nd ed. Oxford: Clarendon Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jan, Verwer, ed. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

service), SpringerLink (Online, ed. Some Aspects of Diffusion Theory. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ghez, Richard. A primer of diffusion problems. New York: Wiley, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ben, De Lacy Costello, and Asai Tetsuya, eds. Reaction-diffusion computers. Boston: Elsevier, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

J, Needham D., ed. Matched asymptotic expansions in reaction-diffusion theory. London: Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhuoqun, Wu, ed. Nonlinear diffusion equations. River Edge, NJ: World Scientific, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Degenerate Nonlinear Diffusion Equations. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Evangelista, Luiz Roberto, and Ervin Kaminski Lenzi. Fractional Diffusion Equations and Anomalous Diffusion. Cambridge University Press, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Evangelista, Luiz Roberto, and Ervin Kaminski Lenzi. Fractional Diffusion Equations and Anomalous Diffusion. Cambridge University Press, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Evangelista, Luiz Roberto, and Ervin Kaminski Lenzi. Fractional Diffusion Equations and Anomalous Diffusion. Cambridge University Press, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nagasawa, M. Schrödinger Equations and Diffusion Theory. Birkhauser Verlag, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Nagasawa, Masao. Schrödinger Equations and Diffusion Theory. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nagasawa, M. Schrödinger Equations and Diffusion Theory. Birkhäuser, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Schrodinger Equations And Diffusion Theory. Springer Basel, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Nagasawa, Masao. Schrödinger Equations and Diffusion Theory. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

J, Brown K., Lacey A. A, and Heriot-Watt University. Dept. of Mathematics., eds. Reaction-diffusion equations: The proceedings of a symposium year on reaction-diffusion equations. Oxford [England]: Clarendon Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Elliptic Partial Differential Equations : Volume 2: Reaction-Diffusion Equations. Springer Basel AG, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Cantrell, Robert Stephen, and Chris Cosner. Spatial Ecology Via Reaction-Diffusion Equations. Wiley & Sons, Incorporated, John, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Assympotiotic Methods in Reaction Diffusion Equations. CRC, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Woyczynski, W. A. Diffusion Processes and Stochastic Differential Equations. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography