Academic literature on the topic 'Diffusion equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Diffusion equations"
Slijepčević, Siniša. "Entropy of scalar reaction-diffusion equations." Mathematica Bohemica 139, no. 4 (2014): 597–605. http://dx.doi.org/10.21136/mb.2014.144137.
Full textGomez, Francisco, Victor Morales, and Marco Taneco. "Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation." Revista Mexicana de Física 65, no. 1 (December 31, 2018): 82. http://dx.doi.org/10.31349/revmexfis.65.82.
Full textBögelein, Verena, Frank Duzaar, Paolo Marcellini, and Stefano Signoriello. "Nonlocal diffusion equations." Journal of Mathematical Analysis and Applications 432, no. 1 (December 2015): 398–428. http://dx.doi.org/10.1016/j.jmaa.2015.06.053.
Full textSOKOLOV, I. M., and A. V. CHECHKIN. "ANOMALOUS DIFFUSION AND GENERALIZED DIFFUSION EQUATIONS." Fluctuation and Noise Letters 05, no. 02 (June 2005): L275—L282. http://dx.doi.org/10.1142/s0219477505002653.
Full textZubair, Muhammad. "Fractional diffusion equations and anomalous diffusion." Contemporary Physics 59, no. 4 (September 11, 2018): 406–7. http://dx.doi.org/10.1080/00107514.2018.1515252.
Full textGurevich, Pavel, and Sergey Tikhomirov. "Systems of reaction-diffusion equations with spatially distributed hysteresis." Mathematica Bohemica 139, no. 2 (2014): 239–57. http://dx.doi.org/10.21136/mb.2014.143852.
Full textFila, Marek, and Ján Filo. "Global behaviour of solutions to some nonlinear diffusion equations." Czechoslovak Mathematical Journal 40, no. 2 (1990): 226–38. http://dx.doi.org/10.21136/cmj.1990.102377.
Full textAbrashina-Zhadaeva, Natali. "A SPLITTING TYPE ALGORITHM FOR NUMERICAL SOLUTION OF PDES OF FRACTIONAL ORDER." Mathematical Modelling and Analysis 12, no. 4 (December 31, 2007): 399–408. http://dx.doi.org/10.3846/1392-6292.2007.12.399-408.
Full textScheel, Arnd, and Erik S. Van Vleck. "Lattice differential equations embedded into reaction–diffusion systems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 139, no. 1 (February 2009): 193–207. http://dx.doi.org/10.1017/s0308210507000248.
Full textKOLTUNOVA, L. N. "ON AVERAGED DIFFUSION EQUATIONS." Chemical Engineering Communications 114, no. 1 (April 1992): 1–15. http://dx.doi.org/10.1080/00986449208936013.
Full textDissertations / Theses on the topic "Diffusion equations"
Ta, Thi nguyet nga. "Sub-gradient diffusion equations." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0137/document.
Full textThis thesis is devoted to the study of evolution problems where the dynamic is governed by sub-gradient diffusion operator. We are interest in two kind of evolution problems. The first problem is governed by local operator of Leray-Lions type with a bounded domain. In this problem, the operator is maximal monotone and does not satisfied the standard polynomial growth control condition. Typical examples appears in the study of non-Neutonian fluid and also in the description of sub-gradient flows dynamics. To study the problem we handle the equation in the context of nonlinear PDE with singular flux. We use the theory of tangential gradient to characterize the state equation that gives the connection between the flux and the gradient of the solution. In the stationary problem, we have the existence of solution, we also get the equivalence between the initial minimization problem, the dual problem and the PDE. In the evolution one, we provide the existence, uniqueness of solution and the contractions. The second problem is governed by a discrete operator. We study the discrete evolution equation which describe the process of collapsing sandpile. This is a typical example of Self-organized critical phenomena exhibited by a critical slop. We consider the discrete evolution equation where the dynamic is governed by sub-gradient of indicator function of the unit ball. We begin by establish the model, we prove existence and uniqueness of the solution. Then by using dual arguments we study the numerical computation of the solution and we present some numerical simulations
Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.
Full textEsta tesis se centra en el comportamiento en tiempos grandes de las soluciones de la ecuación de Fisher- KPP de reacción-difusión con difusión fraccionaria. Este tipo de ecuación surge, por ejemplo, en la propagación espacial o en la propagación de especies biológicas (ratas, insectos,...). En la dinámica de poblaciones, la cantidad que se estudia representa la densidad de la población. Es conocido que, bajo algunas hipótesis específicas, la solución tiende a un estado estable del problema de evolución, cuando el tiempo tiende a infinito. En otras palabras, la población invade el medio, lo que corresponde a la supervivencia de la especie, y nosotros queremos entender con qué velocidad se lleva a cabo esta invasión. Para responder a esta pregunta, hemos creado un nuevo método para estudiar la velocidad de propagación cuando se consideran difusiones fraccionarias, además hemos aplicado este método en tres problemas diferentes. La Parte I de la tesis está dedicada al análisis de la ubicación asintótica de los conjuntos de nivel de la solución de dos problemas diferentes: modelos de Fisher- KPP en medios periódicos y sistemas cooperativos, ambos consideran difusión fraccionaria. En el primer modelo, se prueba que, bajo ciertas hipótesis sobre el medio periódico, la solución se propaga exponencialmente rápido en el tiempo, además encontramos el exponente exacto que aparece en esta velocidad de propagación exponencial. También llevamos a cabo simulaciones numéricas para investigar la dependencia de la velocidad de propagación con la condición inicial. En el segundo modelo, se prueba que la velocidad de propagación es nuevamente exponencial en el tiempo, con un exponente que depende del índice más pequeño de los Laplacianos fraccionarios y también del término de reacción. La Parte II de la tesis ocurre en un entorno de dos dimensiones, donde se reproduce un tipo ecuación de Fisher- KPP con difusión estándar, excepto en una línea del plano, en el que la difusión fraccionada aparece. El plano será llamado "campo" y la línea "camino", como una referencia a las situaciones biológicas que tenemos en mente. De hecho, desde hace tiempo se sabe que la difusión rápida en los caminos puede causar un efecto en la propagación de epidemias. Probamos que la velocidad de propagación es exponencial en el tiempo en el camino, mientras que depende linealmente del tiempo en el campo. Contrariamente a los precisos exponentes obtenidos en la Parte I, para este modelo, no fuimos capaces de dar una localización exacta de los conjuntos de nivel en la carretera y en el campo. La forma de propagación de los conjuntos de nivel en el campo se investiga a través de simulaciones numéricas
Prehl, Janett. "Diffusion on fractals and space-fractional diffusion equations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001068.
Full textThe aim of this thesis is the examination of sub- and superdiffusive processes in fractal structures. The focus of the work concentrates on two separate approaches that are chosen and varied according to the corresponding regime. Thus, we obtain new insights about the underlying mechanisms and a more appropriate way of description for both regimes. In the first part subdiffusion is considered, which plays a crucial role for transport processes, as in living tissues. First, we model the fractal state space via finite Sierpinski carpets with absorbing boundary conditions and we solve the master equation to compute the time development of the probability distribution. To characterize the diffusion on regular as well as random carpets we determine the longest decay time of the probability distribution, the mean exit time and the Random walk dimension. Thus, we can verify the influence of random structures on the diffusive dynamics. In the second part of this thesis superdiffusive processes are studied by means of the diffusion equation. Its second order space derivative is extended to fractional order, which represents the fractal properties of the surrounding media. The resulting space-fractional diffusion equations span a linking regime from the irreversible diffusion equation to the reversible (half) wave equation. The corresponding solutions are analyzed by different entropies, as the Shannon, Tsallis or Rényi entropies and their entropy production rates, which are natural measures of irreversibility. We find an entropy production paradox, i. e. an unexpected increase of the entropy production rate by decreasing irreversibility of the processes. Due to an appropriate rescaling of the entropy we are able to resolve the paradox
Fei, Ning Fei. "Studies in reaction-diffusion equations." Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/310.
Full textGrant, Koryn. "Symmetries and reaction-diffusion equations." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264601.
Full textNinomiya, Hirokazu. "Separatrices of competition-diffusion equations." 京都大学 (Kyoto University), 1995. http://hdl.handle.net/2433/187159.
Full textKyoto Journal of Mathematics, vol35(3), pp.539-567, 1995, http://projecteuclid.org/euclid.kjm/1250518709
Kyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第5884号
理博第1591号
新制||理||889(附属図書館)
UT51-95-D203
京都大学大学院工学研究科数学専攻
(主査)教授 西田 孝明, 教授 渡辺 信三, 教授 岩崎 敷久
学位規則第4条第1項該当
Coulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.
Full textThis thesis focuses on the long time behaviour, and more precisely on fast propagation, in Fisher-KPP reaction diffusion equations involving fractional diffusion. This type of equation arises, for example, in spreading of biological species. Under some specific assumptions, the population invades the medium and we want to understand at which speed this invasion takes place when fractional diffusion is at stake. To answer this question, we set up a new method and apply it on different models. In a first part, we study two different problems, both including fractional diffusion : Fisher-KPP models in periodic media and cooperative systems. In both cases, we prove, under additional assumptions, that the solution spreads exponentially fast in time and we find the precise exponent of propagation. We also carry out numerical simulations to investigate the dependence of the speed of propagation on the initial condition. In a second part, we deal with a two dimensional environment, where reproduction of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which fractional diffusion takes place. The plane is referred to as "the field" and the line to "the road", as a reference to the biological situations we have in mind. We prove that the speed of propagation is exponential in time on the road, whereas it depends linearly on time in the field. The expansion shape of the level sets in the field is investigated through numerical simulations
Knaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.
Full textCoville, Jerome. "Equations de reaction diffusion non-locale." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004313.
Full textCifani, Simone. "On nonlinear fractional convection - diffusion equations." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15192.
Full textBooks on the topic "Diffusion equations"
Seizō, Itō. Diffusion equations. Providence, R.I: American Mathematical Society, 1992.
Find full textFavini, Angelo. Degenerate Nonlinear Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textFavini, Angelo, and Gabriela Marinoschi. Degenerate Nonlinear Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28285-0.
Full textMasao, Nagasawa. Schrödinger equations and diffusion theory. Basel: Birkhäuser Verlag, 1993.
Find full textNagasawa, Masao. Schrödinger Equations and Diffusion Theory. Basel: Springer Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-0560-5.
Full textNagasawa, Masao. Schrödinger Equations and Diffusion Theory. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8568-3.
Full textLam, King-Yeung, and Yuan Lou. Introduction to Reaction-Diffusion Equations. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20422-7.
Full textNonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.
Find full text1955-, Caristi Gabriella, and Mitidieri Enzo, eds. Reaction diffusion systems. New York: Marcel Dekker, 1998.
Find full textShock waves and reaction-diffusion equations. 2nd ed. New York: Springer-Verlag, 1994.
Find full textBook chapters on the topic "Diffusion equations"
Linge, Svein, and Hans Petter Langtangen. "Diffusion Equations." In Finite Difference Computing with PDEs, 207–322. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55456-3_3.
Full textShewmon, Paul. "Diffusion Equations." In Diffusion in Solids, 9–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48206-4_1.
Full textItô, Seizô. "Diffusion Equations." In Kôsaku Yosida Collected Papers, 421–87. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-65859-7_6.
Full textKavdia, Mahendra. "Parabolic Differential Equations, Diffusion Equation." In Encyclopedia of Systems Biology, 1621–24. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_273.
Full textStroock, Daniel W., and S. R. Srinivasa Varadhan. "Stochastic Differential Equations." In Multidimensional Diffusion Processes, 122–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-28999-2_6.
Full textEidelman, Samuil D., Anatoly N. Kochubei, and Stepan D. Ivasyshen. "Fractional Diffusion Equations." In Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, 321–61. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7844-9_5.
Full textJüngel, Ansgar. "Drift-Diffusion Equations." In Transport Equations for Semiconductors, 1–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89526-8_5.
Full textMei, Zhen. "Reaction-Diffusion Equations." In Numerical Bifurcation Analysis for Reaction-Diffusion Equations, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04177-2_1.
Full textDa Prato, Giuseppe. "Reaction-Diffusion Equations." In Kolmogorov Equations for Stochastic PDEs, 99–130. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7909-5_4.
Full textWoyczynski, Wojbor A. "Nonlinear Diffusion Equations." In Diffusion Processes, Jump Processes, and Stochastic Differential Equations, 107–14. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003216759-9.
Full textConference papers on the topic "Diffusion equations"
Hassanpour, H., E. Nadernejad, and H. Miar. "Image enhancement using diffusion equations." In 2007 9th International Symposium on Signal Processing and Its Applications (ISSPA). IEEE, 2007. http://dx.doi.org/10.1109/isspa.2007.4555608.
Full textPopescu, Emil, Cristiana Dumitrache, Vasile Mioc, and Nedelia A. Popescu. "Fractional diffusion equations and applications." In Flows, Boundaries, Interactions. AIP, 2007. http://dx.doi.org/10.1063/1.2790342.
Full textHanyga, Andrzej. "Fractional diffusion and wave equations." In Mathematical Models and Methods for Smart Materials. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776273_0017.
Full textQuintana Murillo, Joaqui´n, and Santos Bravo Yuste. "On an Explicit Difference Method for Fractional Diffusion and Diffusion-Wave Equations." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86625.
Full textSALVARANI, F., and J. L. VÁZQUEZ. "FROM KINETIC SYSTEMS TO DIFFUSION EQUATIONS." In Proceedings of the 12th Conference on WASCOM 2003. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702937_0055.
Full textHwang, Jeehyun, Jeongwhan Choi, Hwangyong Choi, Kookjin Lee, Dongeun Lee, and Noseong Park. "Climate Modeling with Neural Diffusion Equations." In 2021 IEEE International Conference on Data Mining (ICDM). IEEE, 2021. http://dx.doi.org/10.1109/icdm51629.2021.00033.
Full textKoprucki, Thomas, and Klaus Gartner. "Discretization scheme for drift-diffusion equations with strong diffusion enhancement." In 2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2012. http://dx.doi.org/10.1109/nusod.2012.6316560.
Full textISHII, HITOSHI, and HIROYOSHI MITAKE. "TWO REMARKS ON PERIODIC SOLUTIONS OF HAMILTON-JACOBI EQUATIONS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0005.
Full textGEORGI, M., and N. JANGLE. "SPIRAL WAVE MOTION IN REACTION-DIFFUSION SYSTEMS." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0108.
Full textPoláčik, P. "SYMMETRY PROPERTIES OF POSITIVE SOLUTIONS OF PARABOLIC EQUATIONS: A SURVEY." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0009.
Full textReports on the topic "Diffusion equations"
Wang, Chi-Jen. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1226552.
Full textKallianput, G., I. Mitoma, and R. L. Wolpert. Diffusion Equations in Duals of Nuclear Spaces. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada200078.
Full textFujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada190319.
Full textHale, Jack K., and Kunimochi Sakamoto. Shadow Systems and Attractors in Reaction-Diffusion Equations,. Fort Belvoir, VA: Defense Technical Information Center, April 1987. http://dx.doi.org/10.21236/ada185804.
Full textWenocur, Michael L. Diffusion First Passage Times: Approximations and Related Differential Equations,. Fort Belvoir, VA: Defense Technical Information Center, January 1986. http://dx.doi.org/10.21236/ada185592.
Full textFields, Mary A. Modeling Large Scale Troop Movement Using Reaction Diffusion Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada270701.
Full textHeineike, Benjamin M. Modeling Morphogenesis with Reaction-Diffusion Equations Using Galerkin Spectral Methods. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada403766.
Full textAhmed, Hoda F. Gegenbauer Collocation Algorithm for Solving Twodimensional Time-space Fractional Diffusion Equations. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, August 2019. http://dx.doi.org/10.7546/crabs.2019.08.04.
Full textKnapp, Charles E., and Charles W. Cranfill. Comparison of Numeric to Analytic Solutions for a Class of Nonlinear Diffusion Equations. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/1193616.
Full textAhmed, Hoda F. Analytic Approximate Solutions for the 1D and 2D Nonlinear Fractional Diffusion Equations of Fisher Type. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, March 2020. http://dx.doi.org/10.7546/crabs.2020.03.04.
Full text