Journal articles on the topic 'Diffusion drift models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Diffusion drift models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
van den Berg, J. P., N. E. Engelbrecht, N. Wijsen, and R. D. Strauss. "On the Turbulent Reduction of Drifts for Solar Energetic Particles." Astrophysical Journal 922, no. 2 (2021): 200. http://dx.doi.org/10.3847/1538-4357/ac2736.
Full textDegond, Pierre, Florian M�hats, and Christian Ringhofer. "Quantum Energy-Transport and Drift-Diffusion Models." Journal of Statistical Physics 118, no. 3-4 (2005): 625–67. http://dx.doi.org/10.1007/s10955-004-8823-3.
Full textGlitzky, Annegret. "Analysis of spin-polarized drift-diffusion models." PAMM 8, no. 1 (2008): 10717–18. http://dx.doi.org/10.1002/pamm.200810717.
Full textPekkanen, Jami, Oscar Terence Giles, Yee Mun Lee, et al. "Variable-Drift Diffusion Models of Pedestrian Road-Crossing Decisions." Computational Brain & Behavior 5, no. 1 (2021): 60–80. http://dx.doi.org/10.1007/s42113-021-00116-z.
Full textPekkanen, Jami, Oscar Terence Giles, Yee Mun Lee, et al. "Variable-Drift Diffusion Models of Pedestrian Road-Crossing Decisions." Computational Brain & Behavior 5, no. 1 (2021): 60–80. http://dx.doi.org/10.1007/s42113-021-00116-z.
Full textLangner, M., J. Peinke, F. Flemisch, M. Baumann, and D. Beckmann. "Drift and diffusion based models of driver behavior." European Physical Journal B 76, no. 1 (2010): 99–107. http://dx.doi.org/10.1140/epjb/e2010-00148-8.
Full textHübner, Ronald, and Thomas Pelzer. "Improving parameter recovery for conflict drift-diffusion models." Behavior Research Methods 52, no. 5 (2020): 1848–66. http://dx.doi.org/10.3758/s13428-020-01366-8.
Full textChau, Edwin, Carolyn A. Murray, and Ladan Shams. "Hierarchical drift diffusion modeling uncovers multisensory benefit in numerosity discrimination tasks." PeerJ 9 (October 27, 2021): e12273. http://dx.doi.org/10.7717/peerj.12273.
Full textVinyard, Michael E., Anders W. Rasmussen, Ruitong Li, Luca Pinello, and Gad Getz. "Abstract 5371: Modeling single-cell dynamics using stochastic generative models based on neural differential equations." Cancer Research 83, no. 7_Supplement (2023): 5371. http://dx.doi.org/10.1158/1538-7445.am2023-5371.
Full textAnile, A. M., O. Muscato, S. Rinaudo, and P. Vergari. "Testing Hydrodynamical Models on the Characteristics of a One-Dimensional Submicrometer Structure." VLSI Design 6, no. 1-4 (1998): 155–60. http://dx.doi.org/10.1155/1998/63185.
Full textKordt, Pascal, Sven Stodtmann, Alexander Badinski, Mustapha Al Helwi, Christian Lennartz, and Denis Andrienko. "Parameter-free continuous drift–diffusion models of amorphous organic semiconductors." Physical Chemistry Chemical Physics 17, no. 35 (2015): 22778–83. http://dx.doi.org/10.1039/c5cp03605d.
Full textComte, Fabienne, and Valentine Genon-Catalot. "Drift estimation on non compact support for diffusion models." Stochastic Processes and their Applications 134 (April 2021): 174–207. http://dx.doi.org/10.1016/j.spa.2021.01.001.
Full textChalub, Fabio A. C. C., Peter A. Markowich, Beno�t Perthame, and Christian Schmeiser. "Kinetic Models for Chemotaxis and their Drift-Diffusion Limits." Monatshefte f�r Mathematik 142, no. 1-2 (2004): 123–41. http://dx.doi.org/10.1007/s00605-004-0234-7.
Full textFUCHS, F., and F. POUPAUD. "ASYMPTOTICAL AND NUMERICAL ANALYSIS OF DEGENERACY EFFECTS ON THE DRIFT-DIFFUSION EQUATIONS FOR SEMICONDUCTORS." Mathematical Models and Methods in Applied Sciences 05, no. 08 (1995): 1093–111. http://dx.doi.org/10.1142/s0218202595000577.
Full textElbanna, Amany R. "Strategic Systems Implementation: Diffusion through Drift." Journal of Information Technology 23, no. 2 (2008): 89–96. http://dx.doi.org/10.1057/palgrave.jit.2000130.
Full textLabiod, Samir, Saida Latreche, Mourad Bella, and Christian Gontrand. "Combined Electromagnetic and Drift Diffusion Models for Microwave Semiconductor Device." Journal of Electromagnetic Analysis and Applications 03, no. 10 (2011): 423–29. http://dx.doi.org/10.4236/jemaa.2011.310067.
Full textStevens, A., K. Kang, and H. J. Hwang. "Drift-diffusion limits of kinetic models for chemotaxis: A generalization." Discrete and Continuous Dynamical Systems - Series B 5, no. 2 (2005): 319–34. http://dx.doi.org/10.3934/dcdsb.2005.5.319.
Full textBrezzi, Franco, Luisa Donatella Marini, and Paola Pietra. "Two-Dimensional Exponential Fitting and Applications to Drift-Diffusion Models." SIAM Journal on Numerical Analysis 26, no. 6 (1989): 1342–55. http://dx.doi.org/10.1137/0726078.
Full textde Falco, Carlo, Emilio Gatti, Andrea L. Lacaita, and Riccardo Sacco. "Quantum-corrected drift-diffusion models for transport in semiconductor devices." Journal of Computational Physics 204, no. 2 (2005): 533–61. http://dx.doi.org/10.1016/j.jcp.2004.10.029.
Full textWang, Wei-Min, and Jing Wang. "NONPARAMETRIC HYPOTHESIS OF DRIFT FUNCTION IN LOCALLY STATIONARY DIFFUSION MODELS." Far East Journal of Applied Mathematics 100, no. 3 (2018): 181–96. http://dx.doi.org/10.17654/am100030181.
Full textLinetsky, Vadim. "On the transition densities for reflected diffusions." Advances in Applied Probability 37, no. 2 (2005): 435–60. http://dx.doi.org/10.1239/aap/1118858633.
Full textLinetsky, Vadim. "On the transition densities for reflected diffusions." Advances in Applied Probability 37, no. 02 (2005): 435–60. http://dx.doi.org/10.1017/s0001867800000252.
Full textSong, Yuping, Chen Li, Hemin Wang, Jiayi Meng, and Liang Hao. "Nonparametric Threshold Estimation for Drift Function in Jump–Diffusion Model of Interest Rate Using Asymmetric Kernel." Mathematics 11, no. 10 (2023): 2281. http://dx.doi.org/10.3390/math11102281.
Full textBaro, M., H. Neidhardt, and J. Rehberg. "Current Coupling of Drift-Diffusion Models and Schrödinger--Poisson Systems: Dissipative Hybrid Models." SIAM Journal on Mathematical Analysis 37, no. 3 (2005): 941–81. http://dx.doi.org/10.1137/040611690.
Full textHölzermann, Julian. "Term structure modeling under volatility uncertainty." Mathematics and Financial Economics 16, no. 2 (2021): 317–43. http://dx.doi.org/10.1007/s11579-021-00310-4.
Full textSmith, Philip L., and Simon D. Lilburn. "Vision for the blind: visual psychophysics and blinded inference for decision models." Psychonomic Bulletin & Review 27, no. 5 (2020): 882–910. http://dx.doi.org/10.3758/s13423-020-01742-7.
Full textARABSHAHI, H., REZAEE ROKN-ABADI, and S. GOLAFROZ. "COMPARISON OF TWO-VALLEY HYDRODYNAMIC MODEL IN BULK SiC AND ZnO MATERIALS." Modern Physics Letters B 23, no. 23 (2009): 2807–18. http://dx.doi.org/10.1142/s0217984909020916.
Full textLewis, Fraser I., Godfrey Guga, Paschal Mdoe, et al. "Introducing a drift and diffusion framework for childhood growth research." Gates Open Research 4 (June 29, 2020): 71. http://dx.doi.org/10.12688/gatesopenres.13123.1.
Full textLewis, Fraser I., Godfrey Guga, Paschal Mdoe, et al. "Introducing a drift and diffusion framework for childhood growth research." Gates Open Research 4 (November 26, 2020): 71. http://dx.doi.org/10.12688/gatesopenres.13123.2.
Full textPisarenko, Ivan, and Eugeny Ryndin. "Drift-Diffusion Simulation of High-Speed Optoelectronic Devices." Electronics 8, no. 1 (2019): 106. http://dx.doi.org/10.3390/electronics8010106.
Full textBerger, Alexander, Simon Sanwald, Christian Montag, and Markus Kiefer. "The Influence of the BDNF Val66Met Polymorphism on Mechanisms of Semantic Priming: Analyses with Drift-Diffusion Models of Masked and Unmasked Priming." Advances in Cognitive Psychology 17, no. 1 (2021): 70–87. http://dx.doi.org/10.5709/acp-0318-z.
Full textAlasio, Luca, Maria Bruna, and Yves Capdeboscq. "Stability estimates for systems with small cross-diffusion." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 3 (2018): 1109–35. http://dx.doi.org/10.1051/m2an/2018036.
Full textBees, Martin A., and Ottavio A. Croze. "Dispersion of biased swimming micro-organisms in a fluid flowing through a tube." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2119 (2010): 2057–77. http://dx.doi.org/10.1098/rspa.2009.0606.
Full textYan, Sheng, Zhili Zou, and Zaijin You. "Eulerian Description of Wave-Induced Stokes Drift Effect on Tracer Transport." Journal of Marine Science and Engineering 10, no. 2 (2022): 253. http://dx.doi.org/10.3390/jmse10020253.
Full textPedersen, Mads L., and Michael J. Frank. "Simultaneous Hierarchical Bayesian Parameter Estimation for Reinforcement Learning and Drift Diffusion Models: a Tutorial and Links to Neural Data." Computational Brain & Behavior 3, no. 4 (2020): 458–71. http://dx.doi.org/10.1007/s42113-020-00084-w.
Full textKhadir, Abdelkader, Nouredine Sengouga, and Mohamed Kamel Abdelhafidi. "Germanium Gradient Optimization for High-Speed Silicon Germanium Hetero-Junction Bipolar Transistors." Annals of West University of Timisoara - Physics 61, no. 1 (2019): 22–32. http://dx.doi.org/10.2478/awutp-2019-0002.
Full textRus, Florina Stefania, Stefan Danica Novaconi, Paulina Vlazan, and Madalina Ivanovici. "Removal of Methylene Blue by Activated Glass Foams with TiO2 in Dark and Simulated Solar Light." Annals of West University of Timisoara - Physics 61, no. 1 (2019): 33–43. http://dx.doi.org/10.2478/awutp-2019-0003.
Full textHolmes, Geoffrey R., Giles Dixon, Sean R. Anderson, et al. "Drift-Diffusion Analysis of Neutrophil Migration during Inflammation Resolution in a Zebrafish Model." Advances in Hematology 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/792163.
Full textSwinburne, Thomas D., and Danny Perez. "Reaction–drift–diffusion models from master equations: application to material defects." Modelling and Simulation in Materials Science and Engineering 30, no. 3 (2022): 034004. http://dx.doi.org/10.1088/1361-651x/ac54c5.
Full textAlabau, Fatiha. "Structural properties of the one-dimensional drift-diffusion models for semiconductors." Transactions of the American Mathematical Society 348, no. 3 (1996): 823–71. http://dx.doi.org/10.1090/s0002-9947-96-01519-x.
Full textTeunissen, Jannis. "Improvements for drift-diffusion plasma fluid models with explicit time integration." Plasma Sources Science and Technology 29, no. 1 (2020): 015010. http://dx.doi.org/10.1088/1361-6595/ab6757.
Full textBaccarani, Giorgio, Elena Gnani, Antonio Gnudi, Susanna Reggiani, and Massimo Rudan. "Theoretical foundations of the quantum drift-diffusion and density-gradient models." Solid-State Electronics 52, no. 4 (2008): 526–32. http://dx.doi.org/10.1016/j.sse.2007.10.051.
Full textJU, QIANGCHANG, and SHU WANG. "QUASI-NEUTRAL LIMIT OF THE MULTIDIMENSIONAL DRIFT-DIFFUSION MODELS FOR SEMICONDUCTORS." Mathematical Models and Methods in Applied Sciences 20, no. 09 (2010): 1649–79. http://dx.doi.org/10.1142/s021820251000474x.
Full textJüngel, Ansgar, and Nicola Zamponi. "Two spinorial drift-diffusion models for quantum electron transport in graphene." Communications in Mathematical Sciences 11, no. 3 (2013): 807–30. http://dx.doi.org/10.4310/cms.2013.v11.n3.a7.
Full textKnessl, Charles. "Exact and asymptotic solutions to a PDE that arises in time-dependent queues." Advances in Applied Probability 32, no. 1 (2000): 256–83. http://dx.doi.org/10.1239/aap/1013540033.
Full textKnessl, Charles. "Exact and asymptotic solutions to a PDE that arises in time-dependent queues." Advances in Applied Probability 32, no. 01 (2000): 256–83. http://dx.doi.org/10.1017/s0001867800009873.
Full textMuscato, Orazio, and Vincenza Di Stefano. "A hierarchy of hydrodynamic models for silicon carbide semiconductors." Communications in Applied and Industrial Mathematics 8, no. 1 (2017): 251–64. http://dx.doi.org/10.1515/caim-2017-0013.
Full textBANASIAK, JACEK. "MATHEMATICAL PROPERTIES OF INELASTIC SCATTERING MODELS IN LINEAR KINETIC THEORY." Mathematical Models and Methods in Applied Sciences 10, no. 02 (2000): 163–86. http://dx.doi.org/10.1142/s0218202500000112.
Full textYu, Feng, and Yong Yin. "Oil Spill Visualization Based on the Numeric Simulation of Tidal Current." International Journal of Virtual Reality 8, no. 2 (2009): 71–74. http://dx.doi.org/10.20870/ijvr.2009.8.2.2727.
Full textDanielewski, Marek, and Bartek Wierzba. "Bi-Velocity Method and Linear Nonreversible Thermodynamics, Interdiffusion in R2." Defect and Diffusion Forum 297-301 (April 2010): 1461–68. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.1461.
Full text