Academic literature on the topic 'Diffusion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Diffusion"
Khair, Abul, Nilay Kumar Dey, Mohammad Harun-Ur-Rashid, Mohammad Abdul Alim, Newas Mohammad Bahadur, Sultan Mahamud, and Syekat Ahmed. "Diffusimetry Renounces Graham’s Law, Achieves Diffusive Convection, Concentration Gradient Induced Diffusion, Heat and Mass Transfer." Defect and Diffusion Forum 407 (March 2021): 173–84. http://dx.doi.org/10.4028/www.scientific.net/ddf.407.173.
Full textCheung, S. C. H. "Methods to measure apparent diffusion coefficients in compacted bentonite clays and data interpretation." Canadian Journal of Civil Engineering 16, no. 4 (August 1, 1989): 434–43. http://dx.doi.org/10.1139/l89-073.
Full textGadomski, Adam. "(Nano)Granules-Involving Aggregation at a Passage to the Nanoscale as Viewed in Terms of a Diffusive Heisenberg Relation." Entropy 26, no. 1 (January 17, 2024): 76. http://dx.doi.org/10.3390/e26010076.
Full textBengtsson, Lisa, Sander Tijm, Filip Váňa, and Gunilla Svensson. "Impact of Flow-Dependent Horizontal Diffusion on Resolved Convection in AROME." Journal of Applied Meteorology and Climatology 51, no. 1 (January 2012): 54–67. http://dx.doi.org/10.1175/jamc-d-11-032.1.
Full textDa Silva, Marly Terezinha Quadri Simões, and Wellington Mazer. "Diffusion coefficient and tortuosity: Brownian Motion." CONTRIBUCIONES A LAS CIENCIAS SOCIALES 16, no. 9 (September 28, 2023): 18281–302. http://dx.doi.org/10.55905/revconv.16n.9-264.
Full textKhoulif, S., E. B. Hannech, and N. Lamoudi. "Study of Reactive Diffusion in Cu/Zn Diffusion Couple." Indian Journal Of Science And Technology 15, no. 48 (December 27, 2022): 2740–47. http://dx.doi.org/10.17485/ijst/v15i48.13.
Full textLens, Piet N. L., Rakel Gastesi, Frank Vergeldt, Adriaan C. van Aelst, Antonio G. Pisabarro, and Henk Van As. "Diffusional Properties of Methanogenic Granular Sludge: 1H NMR Characterization." Applied and Environmental Microbiology 69, no. 11 (November 2003): 6644–49. http://dx.doi.org/10.1128/aem.69.11.6644-6649.2003.
Full textBenga, Gheorghe, Octavian Popescu, and Victor I. Pop. "Water exchange through erythrocyte membranes: p-choloromercuribenzene sulfonate inhibition of water diffusion in ghosts studied by a nuclear magnetic resonance technique." Bioscience Reports 5, no. 3 (March 1, 1985): 223–28. http://dx.doi.org/10.1007/bf01119591.
Full textPinholt, Henrik D., Søren S. R. Bohr, Josephine F. Iversen, Wouter Boomsma, and Nikos S. Hatzakis. "Single-particle diffusional fingerprinting: A machine-learning framework for quantitative analysis of heterogeneous diffusion." Proceedings of the National Academy of Sciences 118, no. 31 (July 28, 2021): e2104624118. http://dx.doi.org/10.1073/pnas.2104624118.
Full textHutzenthaler, Martin, and Jesse Earl Taylor. "Time reversal of some stationary jump diffusion processes from population genetics." Advances in Applied Probability 42, no. 4 (December 2010): 1147–71. http://dx.doi.org/10.1239/aap/1293113155.
Full textDissertations / Theses on the topic "Diffusion"
Imoto, Yu, and Takashi Odagaki. "Diffusion on diffusing particles." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-193282.
Full textImoto, Yu, and Takashi Odagaki. "Diffusion on diffusing particles." Diffusion fundamentals 6 (2007) 11, S. 1-7, 2007. https://ul.qucosa.de/id/qucosa%3A14185.
Full textBernhardt, Thomas. "Reflected diffusions and piecewise diffusion approximations of Levy processes." Thesis, London School of Economics and Political Science (University of London), 2017. http://etheses.lse.ac.uk/3659/.
Full textPrehl, Janett Hoffmann Karl-Heinz. "Diffusion on fractals Diffusion auf Fraktalen /." [S.l. : s.n.], 2007.
Find full textRane, Swati. "Diffusion tensor imaging at long diffusion time." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29708.
Full textCommittee Chair: Hu, Xiaoping; Committee Member: Brummer, Marijn; Committee Member: Duong, Tim; Committee Member: Keilholz, Shella; Committee Member: Schumacher, Eric. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.
Full textEsta tesis se centra en el comportamiento en tiempos grandes de las soluciones de la ecuación de Fisher- KPP de reacción-difusión con difusión fraccionaria. Este tipo de ecuación surge, por ejemplo, en la propagación espacial o en la propagación de especies biológicas (ratas, insectos,...). En la dinámica de poblaciones, la cantidad que se estudia representa la densidad de la población. Es conocido que, bajo algunas hipótesis específicas, la solución tiende a un estado estable del problema de evolución, cuando el tiempo tiende a infinito. En otras palabras, la población invade el medio, lo que corresponde a la supervivencia de la especie, y nosotros queremos entender con qué velocidad se lleva a cabo esta invasión. Para responder a esta pregunta, hemos creado un nuevo método para estudiar la velocidad de propagación cuando se consideran difusiones fraccionarias, además hemos aplicado este método en tres problemas diferentes. La Parte I de la tesis está dedicada al análisis de la ubicación asintótica de los conjuntos de nivel de la solución de dos problemas diferentes: modelos de Fisher- KPP en medios periódicos y sistemas cooperativos, ambos consideran difusión fraccionaria. En el primer modelo, se prueba que, bajo ciertas hipótesis sobre el medio periódico, la solución se propaga exponencialmente rápido en el tiempo, además encontramos el exponente exacto que aparece en esta velocidad de propagación exponencial. También llevamos a cabo simulaciones numéricas para investigar la dependencia de la velocidad de propagación con la condición inicial. En el segundo modelo, se prueba que la velocidad de propagación es nuevamente exponencial en el tiempo, con un exponente que depende del índice más pequeño de los Laplacianos fraccionarios y también del término de reacción. La Parte II de la tesis ocurre en un entorno de dos dimensiones, donde se reproduce un tipo ecuación de Fisher- KPP con difusión estándar, excepto en una línea del plano, en el que la difusión fraccionada aparece. El plano será llamado "campo" y la línea "camino", como una referencia a las situaciones biológicas que tenemos en mente. De hecho, desde hace tiempo se sabe que la difusión rápida en los caminos puede causar un efecto en la propagación de epidemias. Probamos que la velocidad de propagación es exponencial en el tiempo en el camino, mientras que depende linealmente del tiempo en el campo. Contrariamente a los precisos exponentes obtenidos en la Parte I, para este modelo, no fuimos capaces de dar una localización exacta de los conjuntos de nivel en la carretera y en el campo. La forma de propagación de los conjuntos de nivel en el campo se investiga a través de simulaciones numéricas
Benson, Debbie Lisa. "Reaction diffusion models with spatially inhomogeneous diffusion coefficients." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239337.
Full textPrehl, Janett. "Diffusion on fractals and space-fractional diffusion equations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001068.
Full textThe aim of this thesis is the examination of sub- and superdiffusive processes in fractal structures. The focus of the work concentrates on two separate approaches that are chosen and varied according to the corresponding regime. Thus, we obtain new insights about the underlying mechanisms and a more appropriate way of description for both regimes. In the first part subdiffusion is considered, which plays a crucial role for transport processes, as in living tissues. First, we model the fractal state space via finite Sierpinski carpets with absorbing boundary conditions and we solve the master equation to compute the time development of the probability distribution. To characterize the diffusion on regular as well as random carpets we determine the longest decay time of the probability distribution, the mean exit time and the Random walk dimension. Thus, we can verify the influence of random structures on the diffusive dynamics. In the second part of this thesis superdiffusive processes are studied by means of the diffusion equation. Its second order space derivative is extended to fractional order, which represents the fractal properties of the surrounding media. The resulting space-fractional diffusion equations span a linking regime from the irreversible diffusion equation to the reversible (half) wave equation. The corresponding solutions are analyzed by different entropies, as the Shannon, Tsallis or Rényi entropies and their entropy production rates, which are natural measures of irreversibility. We find an entropy production paradox, i. e. an unexpected increase of the entropy production rate by decreasing irreversibility of the processes. Due to an appropriate rescaling of the entropy we are able to resolve the paradox
Kuchel, Philip W., and Guilhem Pages. "NMR diffusion diffraction and diffusion interference from cells." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-194150.
Full textKuchel, Philip W., and Guilhem Pages. "NMR diffusion diffraction and diffusion interference from cells." Diffusion fundamentals 6 (2007) 74, S. 1-16, 2007. https://ul.qucosa.de/id/qucosa%3A14254.
Full textBooks on the topic "Diffusion"
Chakraverty, S., and Sukanta Nayak. Neutron Diffusion. Boca Raton : CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/b22222.
Full textVogl, Gero. Adventure Diffusion. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04681-1.
Full textGhez, Richard. Diffusion Phenomena. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3361-7.
Full textTringides, M. C., ed. Surface Diffusion. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-0262-7.
Full textL, Gaile Gary, and Thrall Grant Ian, eds. Spatial diffusion. Newbury Park: Sage Publications, 1988.
Find full textSeizō, Itō. Diffusion equations. Providence, R.I: American Mathematical Society, 1992.
Find full textStock, James H. Diffusion indexes. Cambridge, MA: National Bureau of Economic Research, 1998.
Find full textJovanovic, Boyan. Competitive diffusion. Cambridge, MA: National Bureau of Economic Research, 1993.
Find full textNATO Advanced Study Institute on Diffusion in Materials (1989 Aussois, France). Diffusion in materials. Dordrecht: Kluwer Academic Publishers, 1990.
Find full textStroock, Daniel W. Multidimensional diffusion processes. 2nd ed. Berlin: Springer, 1997.
Find full textBook chapters on the topic "Diffusion"
Ahmed, Hesham M., Christopher T. Aquina, Vicente H. Gracias, J. Javier Provencio, Mariano Alberto Pennisi, Giuseppe Bello, Massimo Antonelli, et al. "Diffusion." In Encyclopedia of Intensive Care Medicine, 718. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-00418-6_3085.
Full textAnnesini, Maria Cristina, Luigi Marrelli, Vincenzo Piemonte, and Luca Turchetti. "Diffusion." In Artificial Organ Engineering, 3–22. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6443-2_1.
Full textSalsa, Sandro. "Diffusion." In UNITEXT, 17–114. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15093-2_2.
Full textCooper, Jeffery. "Diffusion." In Introduction to Partial Differential Equations with MATLAB, 73–110. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-1754-1_3.
Full textDurand-Charre, Madeleine. "Diffusion." In Microstructure of Steels and Cast Irons, 163–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08729-9_8.
Full textSavva, Michalakis. "Diffusion." In Pharmaceutical Calculations, 181–208. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20335-1_8.
Full textPorter, D. A., and K. E. Easterling. "Diffusion." In Phase Transformations in Metals and Alloys, 60–109. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-3051-4_2.
Full textScherer, Philipp O. J. "Diffusion." In Graduate Texts in Physics, 479–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61088-7_21.
Full textLiang, Yan. "Diffusion." In Encyclopedia of Earth Sciences Series, 1–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_336-1.
Full textLiang, Yan. "Diffusion." In Encyclopedia of Earth Sciences Series, 363–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_336.
Full textConference papers on the topic "Diffusion"
Yang, Yijun, Ruiyuan Gao, Xiaosen Wang, Tsung-Yi Ho, Nan Xu, and Qiang xu. "MMA-Diffusion: MultiModal Attack on Diffusion Models." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7737–46. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00739.
Full textZhang, Biao, and Peter Wonka. "Functional Diffusion." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4723–32. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00452.
Full textGuo, Jiayi, Xingqian Xu, Yifan Pu, Zanlin Ni, Chaofei Wang, Manushree Vasu, Shiji Song, Gao Huang, and Humphrey Shi. "Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7548–58. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00721.
Full textChen, Xiyi, Marko Mihajlovic, Shaofei Wang, Sergey Prokudin, and Siyu Tang. "Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10359–70. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00986.
Full textHuang, Ziyang, Pengfei Cao, Jun Zhao, and Kang Liu. "DiffusionSL: Sequence Labeling via Tag Diffusion Process." In Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg, PA, USA: Association for Computational Linguistics, 2023. http://dx.doi.org/10.18653/v1/2023.findings-emnlp.860.
Full textLi, Xiuyu, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and Kurt Keutzer. "Q-Diffusion: Quantizing Diffusion Models." In 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2023. http://dx.doi.org/10.1109/iccv51070.2023.01608.
Full textChoi, Saemi, Yusuke Matsui, and Kiyoharu Aizawa. "Diffusion." In SA'14: SIGGRAPH Asia 2014. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2668975.2668987.
Full textChen, Yunmei, and Stacey Chastain. "Anisotropic diffusion driven by diffusion tensors." In International Symposium on Optical Science and Technology, edited by David C. Wilson, Hemant D. Tagare, Fred L. Bookstein, Francoise J. Preteux, and Edward R. Dougherty. SPIE, 2000. http://dx.doi.org/10.1117/12.402435.
Full textZabari, Nir, Aharon Azulay, Alexey Gorkor, Tavi Halperin, and Ohad Fried. "Diffusing Colors: Image Colorization with Text Guided Diffusion." In SA '23: SIGGRAPH Asia 2023. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3610548.3618180.
Full textOdiachi, Judah, Felipe Cruz, and Ali Tinni. "Diffusional and Electrical Tortuosity in Unconventional Shale Reservoirs." In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210164-ms.
Full textReports on the topic "Diffusion"
Lin, Jeong-long, and William Taylor. Thermodynamics of Thermal Diffusion: Thermal Diffusion in Liquids and Thermal Diffusion in Gasses. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/967180.
Full textCooper, Michael William Donald, K. A. Gamble, Christopher Matthews, and Anders David Ragnar Andersson. Irradiation enhanced diffusion and diffusional creep in U₃Si₂. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1633555.
Full textGlynn, Peter W. Diffusion Approximations. Fort Belvoir, VA: Defense Technical Information Center, July 1989. http://dx.doi.org/10.21236/ada212581.
Full textStock, James, and Mark Watson. Diffusion Indexes. Cambridge, MA: National Bureau of Economic Research, August 1998. http://dx.doi.org/10.3386/w6702.
Full textStokey, Nancy. Technology Diffusion. Cambridge, MA: National Bureau of Economic Research, July 2020. http://dx.doi.org/10.3386/w27466.
Full textJovanovic, Boyan, and Glenn MacDonald. Competitive Diffusion. Cambridge, MA: National Bureau of Economic Research, September 1993. http://dx.doi.org/10.3386/w4463.
Full textBurgess Jr, Donald R. Self-Diffusion and Binary-Diffusion Coefficients in Gases. Gaithersburg, MD: National Institute of Standards and Technology, 2023. http://dx.doi.org/10.6028/nist.tn.2279.
Full textYang, T. Diffusion of Zonal Variables Using Node-Centered Diffusion Solver. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/924607.
Full textDayananda, M. A., and R. Venkatasubramanian. Diffusion path representation for two-phase ternary diffusion couples. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/5851361.
Full textTrowbridge, L. Isotopic selectivity of surface diffusion: An activated diffusion model. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5462238.
Full text