Academic literature on the topic 'Diffusion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diffusion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Diffusion"

1

Khair, Abul, Nilay Kumar Dey, Mohammad Harun-Ur-Rashid, Mohammad Abdul Alim, Newas Mohammad Bahadur, Sultan Mahamud, and Syekat Ahmed. "Diffusimetry Renounces Graham’s Law, Achieves Diffusive Convection, Concentration Gradient Induced Diffusion, Heat and Mass Transfer." Defect and Diffusion Forum 407 (March 2021): 173–84. http://dx.doi.org/10.4028/www.scientific.net/ddf.407.173.

Full text
Abstract:
Absolute diffusion rates of KMnO4 in vertical and flattened diffusimeters show the concentration gradient force as being stronger than the gravitational force. Hot water molecules move downward on self-diffusion against buoyancy. Diffusive convection (DC) in warm water and double-diffusive convection (DDC) in warm, saline water take place inside the diffusimeter with DDC transferring more heat than DC. In the diffusing medium the original reagents change or retain their compositions to give the diffusate molecules to diffuse. In water, the change is mostly hydration. The syngener BaCl2.2H2O separately with congeners 3CdSO4.8H2O, ZnSO4.7H2O, and ZnSO4.H2O presents two distinct pairs of overlapping concentration versus rate curves, first for having very close MWs of BaCl2 and CdSO4 and second for having ZnSO4.H2O as the common congener for both the zinc sulfates. Chlorides of Li, Na, and K diffusing at hindered rates in glucose solution show the least rate for LiCl inevitably on grounds of low mass and high Li+ hydration radius. Diffusion blocking occurs at higher glucose concentration. Diffusion of 0.6M AgNO3-0.6M NH4Cl standardizes this diffusimeter. Mass transfer of HCl, H2SO4, and H2C2O4 show oxalic acid diffusing as hydrate and 88 percentage transfer of sulfuric acid in 5 minutes. The Superdiffusive Anti Graham’s Law, Vd , is further consolidated by Ca (NO3)2-M2CO3(M = Na, K, NH4+) and Ca (NO3)2-Na2HPO4 diffusions. Odd and even diffusions are illustrated by AgNO3-NH4Cl and AgNO3-BaCl2 diffusions.
APA, Harvard, Vancouver, ISO, and other styles
2

SCHUMANN, Andrew, Zozan TARHAN, and Vladimir SAZONOV. "Ideologies and Encounters of Ideas at the Crossroads of the Ancient World." STUDIA ANTIQUA ET ARCHAEOLOGICA 30, no. 2 (2024): 235–42. https://doi.org/10.47743/saa-2024-30-2-1.

Full text
Abstract:
In the article introducing this special issue, we consider the prospects of cultural diffusionism. We show that diffusion is not a uniform phenomenon since it includes direct, partial, multi-layered, and reverse forms. The complex approach to diverse forms of diffusions is called by us the crossroads concept. It aligns with cultural relativism which examines cultural traits through diffusion and modification. In world-systems analysis, cultural diffusion is analyzed within the world-economy framework, rooted in the classical Marxism view of economic systems as foundational with culture as a superstructure. Neo-Marxism and dependency theory highlight a division between developed and developing countries, positing that cultural influences often flow from the center to the periphery. However, this view oversimplifies cultural diffusion’s complexities, as we demonstrate. Moreover, cultural diffusion often precedes trade route establishment, with religious diffusion frequently facilitating subsequent trade communications. This special issue, edited by us, explores cultural diffusion and its varied forms, challenging the notion that it fits neatly into a center-to-periphery movement.
APA, Harvard, Vancouver, ISO, and other styles
3

Benga, Gheorghe, Octavian Popescu, and Victor I. Pop. "Water exchange through erythrocyte membranes: p-choloromercuribenzene sulfonate inhibition of water diffusion in ghosts studied by a nuclear magnetic resonance technique." Bioscience Reports 5, no. 3 (March 1, 1985): 223–28. http://dx.doi.org/10.1007/bf01119591.

Full text
Abstract:
A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, corresponding to a decreased exchange rate. However, the diffusional permeability of ghosts was not significantly different from that of erythrocytes. The changes in water diffusion following exposure to p-chloromercuribenzene sulfonate (PCMBS) have been studied on ghosts suspended in isotonic solutions. It was found that a significant inhibitory effect of PCMBS on water diffusion occurred only after several minutes of incubation at 37°C. No inhibition was noticed after short incubation at 0°C as previously used in some labelling experiments. This indicates the location in the membrane interior of the SH groups involved in water diffusion across human erythrocyte membranes. The nuclear magnetic resonance (n. m. r.) method appears as a useful tool for studying changes in water diffusiofl in erythrocyte ghosts with the aim of locating the water channel.
APA, Harvard, Vancouver, ISO, and other styles
4

Khoulif, S., E. B. Hannech, and N. Lamoudi. "Study of Reactive Diffusion in Cu/Zn Diffusion Couple." Indian Journal Of Science And Technology 15, no. 48 (December 27, 2022): 2740–47. http://dx.doi.org/10.17485/ijst/v15i48.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pinholt, Henrik D., Søren S. R. Bohr, Josephine F. Iversen, Wouter Boomsma, and Nikos S. Hatzakis. "Single-particle diffusional fingerprinting: A machine-learning framework for quantitative analysis of heterogeneous diffusion." Proceedings of the National Academy of Sciences 118, no. 31 (July 28, 2021): e2104624118. http://dx.doi.org/10.1073/pnas.2104624118.

Full text
Abstract:
Single-particle tracking (SPT) is a key tool for quantitative analysis of dynamic biological processes and has provided unprecedented insights into a wide range of systems such as receptor localization, enzyme propulsion, bacteria motility, and drug nanocarrier delivery. The inherently complex diffusion in such biological systems can vary drastically both in time and across systems, consequently imposing considerable analytical challenges, and currently requires an a priori knowledge of the system. Here we introduce a method for SPT data analysis, processing, and classification, which we term “diffusional fingerprinting.” This method allows for dissecting the features that underlie diffusional behavior and establishing molecular identity, regardless of the underlying diffusion type. The method operates by isolating 17 descriptive features for each observed motion trajectory and generating a diffusional map of all features for each type of particle. Precise classification of the diffusing particle identity is then obtained by training a simple logistic regression model. A linear discriminant analysis generates a feature ranking that outputs the main differences among diffusional features, providing key mechanistic insights. Fingerprinting operates by both training on and predicting experimental data, without the need for pretraining on simulated data. We found this approach to work across a wide range of simulated and experimentally diverse systems, such as tracked lipases on fat substrates, transcription factors diffusing in cells, and nanoparticles diffusing in mucus. This flexibility ultimately supports diffusional fingerprinting’s utility as a universal paradigm for SPT diffusional analysis and prediction.
APA, Harvard, Vancouver, ISO, and other styles
6

Cherniak, D. J., and E. B. Watson. "Ti diffusion in feldspar." American Mineralogist 105, no. 7 (July 1, 2020): 1040–51. http://dx.doi.org/10.2138/am-2020-7272.

Full text
Abstract:
Abstract Chemical diffusion of Ti has been measured in natural K-feldspar and plagioclase. The sources of diffusant used were TiO2 powders or pre-annealed mixtures of TiO2 and Al2O3. Experiments were run in crimped Pt capsules in air or in sealed silica glass capsules with solid buffers (to buffer at NNO). Rutherford backscattering spectrometry (RBS) was used to measure Ti diffusion profiles. From these measurements, the following Arrhenius relations are obtained for diffusion normal to (001):For oligoclase, over the temperature range 750–1050 °C:DOlig=6.67×10-12exp(-207±31kJ/mol/RT)m2s-1For labradorite, over the temperature range 900–1150 °C:DLab=of4.37×10-14exp(-181±57kJ/mol/RT)m2s-1For K-feldspar, over the temperature range 800–1000 °C:DKsp=3.01×10-6exp(-342±47kJ/mol/RT)m2s-1. Diffusivities for experiments buffered at NNO are similar to those run in air, and the presence of hydrous species appears to have little effect on Ti diffusion. Ti diffusion also shows little evidence of anisotropy. In plagioclase, there appears to be a dependence of Ti diffusion on An content of the feldspar, with Ti diffusing more slowly in more calcic plagioclase. This trend is similar to that observed for other cations in plagioclase, including Sr, Pb, Ba, REE, Si, and Mg. In the case of Ti, an increase of 30% in An content would result in an approximate decrease in diffusivity of an order of magnitude. These data indicate that feldspar should be moderately retentive of Ti chemical signatures, depending on feldspar composition. Ti will be more resistant to diffusional alteration than Sr. For example, Ti zoning on a 50 μm scale in oligoclase would be preserved at 600 °C for durations of ~1 million years, with Sr zoning preserved only for ~70 000 yr at this temperature. These new data for a trace impurity that is relatively slow-diffusing and ubiquitous in feldspars (Hoff and Watson 2018) have the potential to extend the scope and applicability of t-T models for crustal rocks based on measurements of trace elements in feldspars.
APA, Harvard, Vancouver, ISO, and other styles
7

Al-Mashrafi, Khaled. "The influence of longitudinal diffusion on the transport of dust particles emitted from a fixed source." International Journal of Applied Mathematical Research 5, no. 1 (January 9, 2016): 11. http://dx.doi.org/10.14419/ijamr.v5i1.5367.

Full text
Abstract:
<p>The mathematical model for the diffusion of dust particles emitted from a fixed source in the presence of the longitudinal diffusion and absence of latitudinal and vertical diffusions, is investigated. The diffusion of dust particles in the atmosphere is governed by the atmospheric diffusion equation. In the previous paper [1], the general case of the time-dependent diffusion equation in the presence of a point source whose strength is dependent on time, was solved. The calculations showed that the diffusion parameters play an important role in the spread of the dust particles in the atmosphere. In the previous paper, we examined the model in the presence of vertical diffusion and absence of other diffusions to show that for small times, the dust spreads with a front that travels with the speed of the wind. In the current paper, the vertical and latitudinal diffusions are absent while the longitudinal diffusion is present. It is found that the solution depends on the source of time dependence. To study the nature of the solution, two special cases of the source are specified. In the both cases, it is found that there is no discontinuity front, and the dust particles spread slowly into the direction of the wind.</p>
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Siwei, Size Chen, Dan Xiao, Chao Wang, Haixia Wang, Yong Zhang, and Taosheng Li. "Investigating the Impact of Displacement Cascades on Tritium Diffusion in MgT2: A Molecular Dynamics Study." Materials 16, no. 9 (April 25, 2023): 3359. http://dx.doi.org/10.3390/ma16093359.

Full text
Abstract:
Molecular dynamics methods were utilized to investigate displacement cascades and tritium diffusion in α-MgT2. It was observed from collision cascades results that the stable number of defects weakly depended on temperature, while the peak and stable number of defects linearly increased with increasing the primary knock-on atom energy. The results of the mean square displacement study revealed that defects had a significant impact on tritium diffusion. The clustering of magnesium self-interstitial atoms and diffusing tritium atoms results in an increased diffusion barrier, whereas the formation of clusters between tritium interstitial atoms is relatively difficult and has no significant impact on the diffusion barrier. The presence of magnesium and tritium vacancies has a minimal effect on the diffusion barrier due to the large number of diffusing tritium atoms that offset the adsorption of vacancies on diffusing atoms. Both magnesium and tritium interstitial atoms increase the collision probability of diffusing atoms, leading to an increased diffusion prefactor. Magnesium vacancies cause significant lattice distortion, increasing the diffusion barrier, while the impact of tritium vacancies on the diffusion barrier is small due to their minimal lattice distortion effect. The research uncovered significant disparities in the diffusion properties of hydrogen and tritium, indicating that the results of the study of hydrogen storage could not be applied to tritium.
APA, Harvard, Vancouver, ISO, and other styles
9

Lin, C. C., C. L. Tsai, P. K. Wu, and H. J. Lee. "Advancing Diffusion Model for Diffusion in a Cube of Medium." Journal of Mechanics 28, no. 2 (May 8, 2012): 345–54. http://dx.doi.org/10.1017/jmech.2012.38.

Full text
Abstract:
AbstractA solution based on an advancing model for the content of diffusion material in a cube of medium is derived. The cube is assumed to be surrounded by diffusion material, and the diffusion material penetrates through all six surfaces and diffuses toward the center of the cube. The model accounts for the interaction between the diffusions in the three principle coordinates of the Cartesian coordinate system. For the first time, an exact solution of the content of the diffusion material based on the advancing model is derived in a clean form for a three-dimensional case.
APA, Harvard, Vancouver, ISO, and other styles
10

Dalík, Josef. "A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems." Applications of Mathematics 36, no. 5 (1991): 329–54. http://dx.doi.org/10.21136/am.1991.104471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Diffusion"

1

Imoto, Yu, and Takashi Odagaki. "Diffusion on diffusing particles." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-193282.

Full text
Abstract:
We investigate random walk of a particle constrained on cells, where cells behave as a lattice gas on a two dimensional square lattice. By Monte Carlo simulation, we obtain the mean first passage time of the particle as a function of the density and temperature of the lattice gas. We find that the transportation of the particle becomes anomalously slow in a certain range of parameters because of the cross over in dynamics between the low and high density regimes; for low densities the dynamics of cells plays the essential role, and for high densities, the dynamics of the particle plays the dominant role.
APA, Harvard, Vancouver, ISO, and other styles
2

Imoto, Yu, and Takashi Odagaki. "Diffusion on diffusing particles." Diffusion fundamentals 6 (2007) 11, S. 1-7, 2007. https://ul.qucosa.de/id/qucosa%3A14185.

Full text
Abstract:
We investigate random walk of a particle constrained on cells, where cells behave as a lattice gas on a two dimensional square lattice. By Monte Carlo simulation, we obtain the mean first passage time of the particle as a function of the density and temperature of the lattice gas. We find that the transportation of the particle becomes anomalously slow in a certain range of parameters because of the cross over in dynamics between the low and high density regimes; for low densities the dynamics of cells plays the essential role, and for high densities, the dynamics of the particle plays the dominant role.
APA, Harvard, Vancouver, ISO, and other styles
3

Bernhardt, Thomas. "Reflected diffusions and piecewise diffusion approximations of Levy processes." Thesis, London School of Economics and Political Science (University of London), 2017. http://etheses.lse.ac.uk/3659/.

Full text
Abstract:
In the first part of the thesis, the solvability of stochastic differential equations with reflecting boundary conditions is studied. Such equations arise in singular stochastic control problems as a way for determining the optimal strategies. The stochastic differential equations represent homogeneous one-dimensional diffusions while the boundaries are given by c`adl`ag functions. Pathwise solutions are constructed under mild assumptions on the coefficients of the equations. In particular, the solutions are derived as the diffusions’ scale functions composed with appropriately time-changed reflected Brownian motions. Several probabilistic properties are addressed and analysed. In the second part of the thesis, piecewise diffusion approximations of Levy processes are studied. Such approximating processes have been called Itˆo semi-diffusions. While keeping the statistical fit to Levy processes, this class of processes has the analytical tractability of Ito diffusions. At a given time grid, their distribution is the same as the one of the underlying Levy processes. At times outside the grid, they evolve like homogeneous diffusions. The analysis identifies conditions under which Itˆo semi-diffusions can be used as an alternative to Levy processes for modelling financial asset prices. In particular, for a sequence of Itˆo semi-diffusions determined by a given Levy process, conditions for the convergence of their finite-dimensional distributions to the ones of the Levy process are established. Furthermore, for a single Ito semi-diffusion, conditions for the existence of pricing measures are established.
APA, Harvard, Vancouver, ISO, and other styles
4

Prehl, Janett Hoffmann Karl-Heinz. "Diffusion on fractals Diffusion auf Fraktalen /." [S.l. : s.n.], 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rane, Swati. "Diffusion tensor imaging at long diffusion time." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29708.

Full text
Abstract:
Thesis (Ph.D)--Biomedical Engineering, Georgia Institute of Technology, 2009.<br>Committee Chair: Hu, Xiaoping; Committee Member: Brummer, Marijn; Committee Member: Duong, Tim; Committee Member: Keilholz, Shella; Committee Member: Schumacher, Eric. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
6

Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.

Full text
Abstract:
This thesis focuses on the long time behaviour of solutions to Fisher-KPP reaction-diffusion equations involving fractional diffusion. This type of equation arises, for example, in spatial propagation or spreading of biological species (rats, insects,...). In population dynamics, the quantity under study stands for the density of the population. It is well-known that, under some specific assumptions, the solution tends to a stable state of the evolution problem, as time goes to infinity. In other words, the population invades the medium, which corresponds to the survival of the species, and we want to understand at which speed this invasion takes place. To answer this question, we set up a new method to study the speed of propagation when fractional diffusion is at stake and apply it on three different problems. Part I of the thesis is devoted to an analysis of the asymptotic location of the level sets of the solution to two different problems : Fisher-KPP models in periodic media and cooperative systems, both including fractional diffusion. On the first model, we prove that, under some assumptions on the periodic medium, the solution spreads exponentially fast in time and we find the precise exponent that appears in this exponential speed of propagation. We also carry out numerical simulations to investigate the dependence of the speed of propagation on the initial condition. On the second model, we prove that the speed of propagation is once again exponential in time, with an exponent depending on the smallest index of the fractional Laplacians at stake and on the reaction term. Part II of the thesis deals with a two dimensional environment, where reproduction of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which fractional diffusion takes place. The plane is referred to as 'the field' and the line to 'the road', as a reference to the biological situations we have in mind. Indeed, it has long been known that fast diffusion on roads can have a driving effect on the spread of epidemics. We prove that the speed of propagation is exponential in time on the road, whereas it depends linearly on time in the field. Contrary to the precise asymptotics obtained in Part I, for this model, we are not able to give a sharp location of the level sets on the road and in the field. The expansion shape of the level sets in the field is investigated through numerical simulations.<br>Esta tesis se centra en el comportamiento en tiempos grandes de las soluciones de la ecuación de Fisher- KPP de reacción-difusión con difusión fraccionaria. Este tipo de ecuación surge, por ejemplo, en la propagación espacial o en la propagación de especies biológicas (ratas, insectos,...). En la dinámica de poblaciones, la cantidad que se estudia representa la densidad de la población. Es conocido que, bajo algunas hipótesis específicas, la solución tiende a un estado estable del problema de evolución, cuando el tiempo tiende a infinito. En otras palabras, la población invade el medio, lo que corresponde a la supervivencia de la especie, y nosotros queremos entender con qué velocidad se lleva a cabo esta invasión. Para responder a esta pregunta, hemos creado un nuevo método para estudiar la velocidad de propagación cuando se consideran difusiones fraccionarias, además hemos aplicado este método en tres problemas diferentes. La Parte I de la tesis está dedicada al análisis de la ubicación asintótica de los conjuntos de nivel de la solución de dos problemas diferentes: modelos de Fisher- KPP en medios periódicos y sistemas cooperativos, ambos consideran difusión fraccionaria. En el primer modelo, se prueba que, bajo ciertas hipótesis sobre el medio periódico, la solución se propaga exponencialmente rápido en el tiempo, además encontramos el exponente exacto que aparece en esta velocidad de propagación exponencial. También llevamos a cabo simulaciones numéricas para investigar la dependencia de la velocidad de propagación con la condición inicial. En el segundo modelo, se prueba que la velocidad de propagación es nuevamente exponencial en el tiempo, con un exponente que depende del índice más pequeño de los Laplacianos fraccionarios y también del término de reacción. La Parte II de la tesis ocurre en un entorno de dos dimensiones, donde se reproduce un tipo ecuación de Fisher- KPP con difusión estándar, excepto en una línea del plano, en el que la difusión fraccionada aparece. El plano será llamado "campo" y la línea "camino", como una referencia a las situaciones biológicas que tenemos en mente. De hecho, desde hace tiempo se sabe que la difusión rápida en los caminos puede causar un efecto en la propagación de epidemias. Probamos que la velocidad de propagación es exponencial en el tiempo en el camino, mientras que depende linealmente del tiempo en el campo. Contrariamente a los precisos exponentes obtenidos en la Parte I, para este modelo, no fuimos capaces de dar una localización exacta de los conjuntos de nivel en la carretera y en el campo. La forma de propagación de los conjuntos de nivel en el campo se investiga a través de simulaciones numéricas
APA, Harvard, Vancouver, ISO, and other styles
7

Benson, Debbie Lisa. "Reaction diffusion models with spatially inhomogeneous diffusion coefficients." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prehl, Janett. "Diffusion on fractals and space-fractional diffusion equations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001068.

Full text
Abstract:
Ziel dieser Arbeit ist die Untersuchung der Sub- und Superdiffusion in fraktalen Strukturen. Der Fokus liegt auf zwei separaten Ansätzen, die entsprechend des Diffusionbereiches gewählt und variiert werden. Dadurch erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise für beide Bereiche. Im ersten Teil betrachten wir subdiffusive Prozesse, die vor allem bei Transportvorgängen, z. B. in lebenden Geweben, eine grundlegende Rolle spielen. Hierbei modellieren wir den fraktalen Zustandsraum durch endliche Sierpinski Teppiche mit absorbierenden Randbedingungen und lösen dann die Mastergleichung zur Berechnung der Zeitentwicklung der Wahrscheinlichkeitsverteilung. Zur Charakterisierung der Diffusion auf regelmäßigen und zufälligen Teppichen bestimmen wir die Abfallzeit der Wahrscheinlichkeitsverteilung, die mittlere Austrittszeit und die Random Walk Dimension. Somit können wir den Einfluss zufälliger Strukturen auf die Diffusion aufzeigen. Superdiffusive Prozesse werden im zweiten Teil der Arbeit mit Hilfe der Diffusionsgleichung untersucht. Deren zweite Ableitung im Ort erweitern wir auf nichtganzzahlige Ordnungen, um die fraktalen Eigenschaften der Umgebung darzustellen. Die resultierende raum-fraktionale Diffusionsgleichung spannt ein Übergangsregime von der irreversiblen Diffusionsgleichung zur reversiblen Wellengleichung auf. Deren Lösungen untersuchen wir mittels verschiedener Entropien, wie Shannon, Tsallis oder Rényi Entropien, und deren Entropieproduktionsraten, welche natürliche Maße für die Irreversibilität sind. Das dabei gefundene Entropieproduktions-Paradoxon, d. h. ein unerwarteter Anstieg der Entropieproduktionsrate bei sinkender Irreversibilität des Prozesses, können wir nach geeigneter Reskalierung der Entropien auflösen<br>The aim of this thesis is the examination of sub- and superdiffusive processes in fractal structures. The focus of the work concentrates on two separate approaches that are chosen and varied according to the corresponding regime. Thus, we obtain new insights about the underlying mechanisms and a more appropriate way of description for both regimes. In the first part subdiffusion is considered, which plays a crucial role for transport processes, as in living tissues. First, we model the fractal state space via finite Sierpinski carpets with absorbing boundary conditions and we solve the master equation to compute the time development of the probability distribution. To characterize the diffusion on regular as well as random carpets we determine the longest decay time of the probability distribution, the mean exit time and the Random walk dimension. Thus, we can verify the influence of random structures on the diffusive dynamics. In the second part of this thesis superdiffusive processes are studied by means of the diffusion equation. Its second order space derivative is extended to fractional order, which represents the fractal properties of the surrounding media. The resulting space-fractional diffusion equations span a linking regime from the irreversible diffusion equation to the reversible (half) wave equation. The corresponding solutions are analyzed by different entropies, as the Shannon, Tsallis or Rényi entropies and their entropy production rates, which are natural measures of irreversibility. We find an entropy production paradox, i. e. an unexpected increase of the entropy production rate by decreasing irreversibility of the processes. Due to an appropriate rescaling of the entropy we are able to resolve the paradox
APA, Harvard, Vancouver, ISO, and other styles
9

Kuchel, Philip W., and Guilhem Pages. "NMR diffusion diffraction and diffusion interference from cells." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-194150.

Full text
Abstract:
Pulsed field gradient spin-echo (PGSE) NMR spectroscopy is the definitive means for measuring translational motion of molecules in free solution and in heterogeneous systems. A unique ‘twist’ on the method is that in some systems in which diffusion is restricted the PGSE experiment yields information on the geometrical properties of the confining boundaries. When applied to red blood cells (RBCs) in suspensions, using intense magnetic field gradients (around 10 T m-1), the graph of normalized NMR-signal intensity versus the magnitude of the field gradients has the form of the diffraction and interference patterns that are seen in physical optics. We review here the nature of these so called q-space plots and discuss a data-processing method that adds objectivity to estimates of the mean RBC diameter. Convection potentially interferes with the veracity of these measurements so an experiment is reported in which a cell-free sample was deliberately made to flow. The very simple analysis of flow diffraction yielded estimates of flow that were in remarkable agreement with gravimetric measurements. Finally, in a theoretical study using a model of uniformly arrayed octagonal prisms that were ‘morphed’ in a systematic way, the dependence of the form of q-space plots on prism shape and packing density was obtained. This showed that elaborately shaped q-space plots can be obtained from simple periodic arrays of ‘cells’. The uniqueness or otherwise of shapes of q-space plots, and the prospect of generally solving the inverse problem whereby q-space analysis yields detailed information on packing arrangements is poised for further detailed investigations.
APA, Harvard, Vancouver, ISO, and other styles
10

Kuchel, Philip W., and Guilhem Pages. "NMR diffusion diffraction and diffusion interference from cells." Diffusion fundamentals 6 (2007) 74, S. 1-16, 2007. https://ul.qucosa.de/id/qucosa%3A14254.

Full text
Abstract:
Pulsed field gradient spin-echo (PGSE) NMR spectroscopy is the definitive means for measuring translational motion of molecules in free solution and in heterogeneous systems. A unique ‘twist’ on the method is that in some systems in which diffusion is restricted the PGSE experiment yields information on the geometrical properties of the confining boundaries. When applied to red blood cells (RBCs) in suspensions, using intense magnetic field gradients (around 10 T m-1), the graph of normalized NMR-signal intensity versus the magnitude of the field gradients has the form of the diffraction and interference patterns that are seen in physical optics. We review here the nature of these so called q-space plots and discuss a data-processing method that adds objectivity to estimates of the mean RBC diameter. Convection potentially interferes with the veracity of these measurements so an experiment is reported in which a cell-free sample was deliberately made to flow. The very simple analysis of flow diffraction yielded estimates of flow that were in remarkable agreement with gravimetric measurements. Finally, in a theoretical study using a model of uniformly arrayed octagonal prisms that were ‘morphed’ in a systematic way, the dependence of the form of q-space plots on prism shape and packing density was obtained. This showed that elaborately shaped q-space plots can be obtained from simple periodic arrays of ‘cells’. The uniqueness or otherwise of shapes of q-space plots, and the prospect of generally solving the inverse problem whereby q-space analysis yields detailed information on packing arrangements is poised for further detailed investigations.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Diffusion"

1

Chakraverty, S., and Sukanta Nayak. Neutron Diffusion. Boca Raton : CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/b22222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vogl, Gero. Adventure Diffusion. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04681-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghez, Richard. Diffusion Phenomena. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3361-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tringides, M. C., ed. Surface Diffusion. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-0262-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

L, Gaile Gary, and Thrall Grant Ian, eds. Spatial diffusion. Newbury Park: Sage Publications, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seizō, Itō. Diffusion equations. Providence, R.I: American Mathematical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stock, James H. Diffusion indexes. Cambridge, MA: National Bureau of Economic Research, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jovanovic, Boyan. Competitive diffusion. Cambridge, MA: National Bureau of Economic Research, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

NATO Advanced Study Institute on Diffusion in Materials (1989 Aussois, France). Diffusion in materials. Dordrecht: Kluwer Academic Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stroock, Daniel W. Multidimensional diffusion processes. 2nd ed. Berlin: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Diffusion"

1

Ahmed, Hesham M., Christopher T. Aquina, Vicente H. Gracias, J. Javier Provencio, Mariano Alberto Pennisi, Giuseppe Bello, Massimo Antonelli, et al. "Diffusion." In Encyclopedia of Intensive Care Medicine, 718. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-00418-6_3085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Annesini, Maria Cristina, Luigi Marrelli, Vincenzo Piemonte, and Luca Turchetti. "Diffusion." In Artificial Organ Engineering, 3–22. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6443-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Salsa, Sandro. "Diffusion." In UNITEXT, 17–114. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15093-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cooper, Jeffery. "Diffusion." In Introduction to Partial Differential Equations with MATLAB, 73–110. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-1754-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Durand-Charre, Madeleine. "Diffusion." In Microstructure of Steels and Cast Irons, 163–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08729-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Savva, Michalakis. "Diffusion." In Pharmaceutical Calculations, 181–208. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20335-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Porter, D. A., and K. E. Easterling. "Diffusion." In Phase Transformations in Metals and Alloys, 60–109. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-3051-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Scherer, Philipp O. J. "Diffusion." In Graduate Texts in Physics, 479–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61088-7_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liang, Yan. "Diffusion." In Encyclopedia of Earth Sciences Series, 1–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_336-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liang, Yan. "Diffusion." In Encyclopedia of Earth Sciences Series, 363–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_336.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Diffusion"

1

Yang, Yijun, Ruiyuan Gao, Xiaosen Wang, Tsung-Yi Ho, Nan Xu, and Qiang xu. "MMA-Diffusion: MultiModal Attack on Diffusion Models." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7737–46. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Parihar, Rishubh, Prasanna Balaji, Raghav Magazine, Sarthak Vora, Varun Jampani, and R. Venkatesh Babu. "Attribute Diffusion: Diffusion Driven Diverse Attribute Editing." In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 3721–31. IEEE, 2025. https://doi.org/10.1109/wacv61041.2025.00366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Biao, and Peter Wonka. "Functional Diffusion." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4723–32. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hsu, Po-Chu, Ziying Yu, Nasratullah Ghafoori, Shuhei Mise, and Hideaki Miyaji. "Anonymous-Diffusion: Blockchain-Based Privacy-Preserving Stable Diffusion." In 2025 1st International Conference on Consumer Technology (ICCT-Pacific), 1–4. IEEE, 2025. https://doi.org/10.1109/icct-pacific63901.2025.11012859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nair, Nithin Gopalakrishnan, Vibashan Vishnukuamr Sharmini, and Vishal M. Patel. "Diffusion-Derep: Removing Sample Replication During Diffusion Inference." In 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI), 1–5. IEEE, 2025. https://doi.org/10.1109/isbi60581.2025.10981018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Jiayi, Xingqian Xu, Yifan Pu, Zanlin Ni, Chaofei Wang, Manushree Vasu, Shiji Song, Gao Huang, and Humphrey Shi. "Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7548–58. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hsu, Po-Chu, Ziying Yu, Shuhei Mise, and Hideaki Miyaji. "Privacy-Diffusion: Privacy-Preserving Stable Diffusion Without Homomorphic Encryption." In 2025 IEEE International Conference on Consumer Electronics (ICCE), 1–4. IEEE, 2025. https://doi.org/10.1109/icce63647.2025.10929778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spisak, Josua, Matthias Kerzel, and Stefan Wermter. "Diffusing in Someone Else’s Shoes: Robotic Perspective-Taking with Diffusion." In 2024 IEEE-RAS 23rd International Conference on Humanoid Robots (Humanoids), 141–48. IEEE, 2024. https://doi.org/10.1109/humanoids58906.2024.10769830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Ziyang, Pengfei Cao, Jun Zhao, and Kang Liu. "DiffusionSL: Sequence Labeling via Tag Diffusion Process." In Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg, PA, USA: Association for Computational Linguistics, 2023. http://dx.doi.org/10.18653/v1/2023.findings-emnlp.860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Xiuyu, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and Kurt Keutzer. "Q-Diffusion: Quantizing Diffusion Models." In 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2023. http://dx.doi.org/10.1109/iccv51070.2023.01608.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Diffusion"

1

Lin, Jeong-long, and William Taylor. Thermodynamics of Thermal Diffusion: Thermal Diffusion in Liquids and Thermal Diffusion in Gasses. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/967180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cooper, Michael William Donald, K. A. Gamble, Christopher Matthews, and Anders David Ragnar Andersson. Irradiation enhanced diffusion and diffusional creep in U₃Si₂. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1633555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Glynn, Peter W. Diffusion Approximations. Fort Belvoir, VA: Defense Technical Information Center, July 1989. http://dx.doi.org/10.21236/ada212581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stock, James, and Mark Watson. Diffusion Indexes. Cambridge, MA: National Bureau of Economic Research, August 1998. http://dx.doi.org/10.3386/w6702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stokey, Nancy. Technology Diffusion. Cambridge, MA: National Bureau of Economic Research, July 2020. http://dx.doi.org/10.3386/w27466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jovanovic, Boyan, and Glenn MacDonald. Competitive Diffusion. Cambridge, MA: National Bureau of Economic Research, September 1993. http://dx.doi.org/10.3386/w4463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Weingarden, Alison, and Alexander Lembcke. Innovation diffusion. Organisation for Economic Co-Operation and Development (OECD), December 2024. https://doi.org/10.1787/959acfec-en.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burgess Jr, Donald R. Self-Diffusion and Binary-Diffusion Coefficients in Gases. Gaithersburg, MD: National Institute of Standards and Technology, 2023. http://dx.doi.org/10.6028/nist.tn.2279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, T. Diffusion of Zonal Variables Using Node-Centered Diffusion Solver. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/924607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dayananda, M. A., and R. Venkatasubramanian. Diffusion path representation for two-phase ternary diffusion couples. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/5851361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography