To see the other types of publications on this topic, follow the link: Diffraction des Rayons X synchrotron.

Journal articles on the topic 'Diffraction des Rayons X synchrotron'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Diffraction des Rayons X synchrotron.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ravy, Sylvain. "La diffraction cohérente des rayons X." Reflets de la physique, no. 34-35 (June 2013): 60–64. http://dx.doi.org/10.1051/refdp/201334060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Popescu, M., F. Sava, A. Lörinczi, I. N. Mihailescu, I. Cojocaru, and G. Mihailova. "Diffraction de rayons X sur le silicium poreux." Le Journal de Physique IV 08, PR5 (October 1998): Pr5–31—Pr5–37. http://dx.doi.org/10.1051/jp4:1998505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cox, D. E. "Synchrotron X-Ray Powder Diffraction." MRS Bulletin 12, no. 1 (February 1987): 16–20. http://dx.doi.org/10.1557/s088376940006869x.

Full text
Abstract:
X-ray powder diffraction is one of the most widely used techniques by scientists engaged in the synthesis, analysis, and characterization of solids. It is estimated that there are now about 25,000 users throughout the world, of which about one third are in the United States. Any single-phase polycrystalline material gives an x-ray pattern which can be regarded as a unique “fingerprint,” and modern automated search-and-match techniques used in conjunction with the Powder Diffraction File (maintained by the International Center for Diffraction Data, Swarthmore, PA) allow routine analysis of samples in minutes. From an x-ray pattern of good quality it is possible to determine unit cell parameters with high accuracy and impurity concentrations of 1-5%, so that powder techniques are extremely valuable in phase equilibrium studies and residual stress measurements, for example. In addition, a detailed analysis of line shapes gives information about physical properties such as the size and shape of the individual crystallites, microscopic strain, and stacking disorder.In the early days of crystallography many simple (and some not-so-simple) structures were solved from x-ray powder diffraction patterns, but the obvious limitations to the number of individual reflection intensities which can be estimated and the increasing sophistication of single-crystal techniques resulted in a decline in the importance of this application in the 1950s and 1960s.
APA, Harvard, Vancouver, ISO, and other styles
4

Bach, M., N. Broll, A. Cornet, and L. Gaide. "Diffraction X en traitements thermiques : dosage de l'austénite résiduelle par diffraction des rayons X." Le Journal de Physique IV 06, no. C4 (July 1996): C4–887—C4–895. http://dx.doi.org/10.1051/jp4:1996485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bourret, A. "Étude des interfaces enterrées par diffraction de rayons X." Le Journal de Physique IV 07, no. C6 (December 1997): C6–19—C6–29. http://dx.doi.org/10.1051/jp4:1997602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abbas, S., A. Raho, and M. Kadi-Hanifi. "Caractérisation de solutions solides par diffraction des rayons X." Le Journal de Physique IV 10, PR10 (September 2000): Pr10–49—Pr10–54. http://dx.doi.org/10.1051/jp4:20001006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kadi-Hanifi, M., H. Yousfi, and A. Raho. "Caractérisation de solutions solides par diffraction des rayons X." Revue de Métallurgie 90, no. 9 (September 1993): 1116. http://dx.doi.org/10.1051/metal/199390091116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grousson, Mathieu. "Amélie Juhin: tient théorie et expérience dans une seule main." Reflets de la physique, no. 57 (April 2018): 39. http://dx.doi.org/10.1051/refdp/201857039.

Full text
Abstract:
Spécialiste de spectroscopie des rayons X, lauréate de la médaille de bronze du CNRS en 2016, cette physico-chimiste se sent aussi à l’aise auprès d’une ligne de lumière d’un synchrotron qu’avec des équations.
APA, Harvard, Vancouver, ISO, and other styles
9

Sutton, S. R., M. L. Rivers, and J. V. Smith. "Synchrotron x-ray fluorescence: diffraction interference." Analytical Chemistry 58, no. 11 (August 1986): 2167–71. http://dx.doi.org/10.1021/ac00124a013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bonod, Nicolas. "Physicien célèbre : Max von Laue." Photoniques, no. 98 (September 2019): 18–19. http://dx.doi.org/10.1051/photon/20199818.

Full text
Abstract:
Max von Laue est un physicien théoricien allemand spécialiste de la diffraction des ondes, de la relativité et de la superconductivité. Il propose en 1912 de sonder l’arrangement périodique de la matière avec des faisceaux de courtes longueurs d’onde, les rayons X ; et sera récompensé par le prix Nobel de Physique en 1914. La découverte de la diffraction des rayons X par des cristaux sera à l’origine d’avancées majeures dans les 100 ans qui suivirent, de la découverte de la structure de l’ADN à celle des quasi-cristaux.
APA, Harvard, Vancouver, ISO, and other styles
11

Brunel, M., and F. de Bergevin. "Diffraction d'un faisceau de rayons X en incidence très rasante." Acta Crystallographica Section A Foundations of Crystallography 42, no. 5 (September 1, 1986): 299–303. http://dx.doi.org/10.1107/s010876738609921x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kahloun, C., K. F. Badawi, and A. Diou. "Incertitude sur l'analyse des contraintes par diffraction des rayons X." Revue de Physique Appliquée 25, no. 12 (1990): 1225–38. http://dx.doi.org/10.1051/rphysap:0199000250120122500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bulteel, D., E. Garcia-Diaz, J. Durr, L. Khouchaf, C. Vernet, and J. M. Siwak. "Étude d'un granulat alcali-réactif par diffraction des rayons X." Le Journal de Physique IV 10, PR10 (September 2000): Pr10–513—Pr10–520. http://dx.doi.org/10.1051/jp4:20001055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Louër, D. "Microstructure et profil des raies de diffraction des rayons X." Journal de Physique IV (Proceedings) 103 (February 2003): 321–37. http://dx.doi.org/10.1051/jp4:200300013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Baruchel, José, Armelle Philip, and Paul Tafforeau. "Nouvelles applications de l’imagerie aux rayons X en utilisant le rayonnement synchrotron." Reflets de la physique, no. 34-35 (June 2013): 32–37. http://dx.doi.org/10.1051/refdp/201334032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Riekel, C. "Microfocus diffraction with X-ray synchrotron radiation." Acta Crystallographica Section A Foundations of Crystallography 60, a1 (August 26, 2004): s2. http://dx.doi.org/10.1107/s0108767304099969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hall, C., P. Barnes, J. K. Cockcroft, S. L. Colston, D. Häusermann, S. D. M. Jacques, A. C. Jupe, and M. Kunz. "Synchrotron energy-dispersive X-ray diffraction tomography." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 140, no. 1-2 (April 1998): 253–57. http://dx.doi.org/10.1016/s0168-583x(97)00994-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Barroso, R. C., R. T. Lopes, E. F. O. de Jesus, and L. F. Oliveira. "X-ray diffraction microtomography using synchrotron radiation." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 471, no. 1-2 (September 2001): 75–79. http://dx.doi.org/10.1016/s0168-9002(01)00918-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Maehlen, J. P., V. A. Yartys, A. B. Riabov, A. Budziak, H. Figiel, and J. Żukrowski. "Synchrotron X-ray diffraction study of ErMn2D2." Journal of Alloys and Compounds 437, no. 1-2 (June 2007): 140–45. http://dx.doi.org/10.1016/j.jallcom.2006.07.088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Parrish, William. "Advances in Synchrotron X-ray Polycrystalline Diffraction." Australian Journal of Physics 41, no. 2 (1988): 101. http://dx.doi.org/10.1071/ph880101.

Full text
Abstract:
The advantages of synchrotron radiation for X-ray polycrystalline diffraction are illustrated by a number of examples. The plane wave parallel-beam X-ray optics uses a Si(lll) channel monochromator for easy wavelength selection and a set of long parallel slits to define the diffracted beam. The constant simple instrument function and the high resolution symmetrical profiles (FWHM 0.05") greatly simplify the data analysis and add a new dimension to profile broadening studies. The geometry permits uncoupling the 6-26 sample-detector relationship without changing the profile shape and makes possible new applications such as grazing angle incidence depth analysis of thin films. The same instrumentation is used for high resolution energy dispersive diffraction (BOD) by step-scanning the monochromator. The resolution is two orders of magnitude better than conventional BOD and can be used at high count rates. The easy wavelength selection yields diffraction patterns with the highest PI B and permits anomalous scattering studies.
APA, Harvard, Vancouver, ISO, and other styles
21

KOBAYASHI, MASAMICHI. "X-rey Diffraction: Dynamics Studied by Time-resolved Synchrotron X-ray Diffraction." Sen'i Gakkaishi 49, no. 4 (1993): P130—P134. http://dx.doi.org/10.2115/fiber.49.4_p130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

de Vries, J. L. "Historique de la diffraction et de la fluorescence des rayons X." Le Journal de Physique IV 06, no. C4 (July 1996): C4–695—C4–701. http://dx.doi.org/10.1051/jp4:1996467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Edhokkar, Fadhila, Ahmed Hadrich, Mohsen Graia, and Tahar Mhiri. "Ba1.01Sr0.99P2O7: un nouveau site Ba2+révélé par diffraction des rayons X." Acta Crystallographica Section C Crystal Structure Communications 68, no. 12 (November 29, 2012): i86—i88. http://dx.doi.org/10.1107/s0108270112047002.

Full text
Abstract:
Single crystals of barium strontium diphosphate, Ba1.01Sr0.99P2O7, were prepared by a solid-state reaction. The compound is isostructural with α-Ba2P2O7, α-Sr2P2O7and BaPbP2O7. The structure has only one diphosphate group of the dichromate type that is repeated by symmetry to form sheets. These sheets present mirror planes perpendicular to theaaxis, situated atx= {1 \over 4} and {3 \over 4}. All the cations and three of the five independent O atoms are located on these mirror planes. The Ba2+cations are nine-coordinated by O atoms. The Ba2+and Sr2+cations are distributed on three different sites, in contrast with the isostructural compounds where only two sites are fully occupied. The refined site occupancies sum to a Ba:Sr ratio of 1.0133 (18):0.9867 (13), which leads to the reported deviation from the BaSrP2O7stoichiometry. The Raman spectrum of the compound is also reported and discussed.
APA, Harvard, Vancouver, ISO, and other styles
24

Bergmann, Uwe, Rafaella Georgiou, Pierre Gueriau, Jean-Pascal Rueff, and Loïc Bertrand. "Nouvelles spectroscopies Raman X du carbone pour les matériaux anciens." Reflets de la physique, no. 63 (October 2019): 22–25. http://dx.doi.org/10.1051/refdp/201963022.

Full text
Abstract:
L’identification des composés à base de carbone, bien que difficile, est une source d’information essentielle dans de nombreuses études archéologiques et paléontologiques. La diffusion Raman de rayons X est une méthode de spectroscopie sur synchrotron qui permet d’identifier des signatures organiques, de retracer l’origine chimique des systèmes étudiés et de comprendre l’altération des composés organiques dans le temps. Cette technique, conduite de manière non destructive, dans l’air, avec une sensibilité en profondeur afin de fournir des informations non compromises par la contamination superficielle, surmonte ainsi plusieurs contraintes fondamentales à la caractérisation des matériaux organiques anciens.
APA, Harvard, Vancouver, ISO, and other styles
25

ITO, Masahisa. "Synchrotron Radiation. III. Measurement by Synchrotron Radiation. 9. X-Ray Magnetic Diffraction." RADIOISOTOPES 47, no. 5 (1998): 435–45. http://dx.doi.org/10.3769/radioisotopes.47.435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fitch, Andrew N. "Applications of High-Resolution Powder X-Ray Diffraction." Solid State Phenomena 130 (December 2007): 7–14. http://dx.doi.org/10.4028/www.scientific.net/ssp.130.7.

Full text
Abstract:
The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.
APA, Harvard, Vancouver, ISO, and other styles
27

KAWADO, Seiji. "Historical Development of Synchrotron X-ray Diffraction Topography." Nihon Kessho Gakkaishi 54, no. 1 (2012): 2–11. http://dx.doi.org/10.5940/jcrsj.54.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

DiMasi, E., and M. Sarikaya. "Synchrotron x-ray microbeam diffraction from abalone shell." Journal of Materials Research 19, no. 5 (May 2004): 1471–76. http://dx.doi.org/10.1557/jmr.2004.0196.

Full text
Abstract:
Microstructured biomaterials such as mollusk shells receive much attention at present, due to the promise that advanced materials can be designed and synthesized with biomimetic techniques that take advantage of self-assembly and aqueous, ambient processing conditions. A satisfactory understanding of this process requires characterization of the microstructure not only in the mature biomaterial, but at the growth fronts where the control over crystal morphology and orientation is enacted. In this paper, we present synchrotron microbeam x-ray diffraction (XRD) and electron microscopy observations near the nacre–prismatic interface of red abalone shell. The relative orientations of calcite and aragonite grains exhibit some differences from the idealizations reported previously. Long calcite grains impinge the nacre–prismatic boundary at 45° angles, suggestive of nucleation on (104) planes followed by growth along the c axis. In the region within 100 μm of the boundary, calcite and aragonite crystals lose their bulk orientational order, but we found no evidence for qualitative changes in long-range order such as ideal powder texture or an amorphous structure factor. XRD rocking curves determined the mosaic of calcite crystals in the prismatic region to be no broader than the 0.3° resolution limit of the beamline’s capillary optics, comparable to what can be measured on geological calcite single crystals.
APA, Harvard, Vancouver, ISO, and other styles
29

Komizo, Y., and H. Terasaki. "In situtime resolved X‐ray diffraction using synchrotron." Science and Technology of Welding and Joining 16, no. 1 (January 2011): 79–86. http://dx.doi.org/10.1179/136217110x12785889549822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gu, Qinfen, Helen Brand, and Justin Kimpton. "Battery research using synchrotron powder X-ray diffraction." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C951. http://dx.doi.org/10.1107/s2053273314090482.

Full text
Abstract:
Research and development of rechargeable batteries is critical to meet the worldwide demand for clean and sustainable energy collection and storage. A vital part of this research is to get clear understanding of how the crystal structures of electrode materials affect the the resulting properties of the batteries. As structural changes in both the anode and cathode materials play an important role in overall battery performance, synchrotron powder X-ray diffraction (PXRD), with high beam flux and resolution, is an extremely useful tool for studying the battery both in-situ and ex-situ. Several simple in-situ cell designs have been designed for synchrotron PXRD measurement. The cell is available for researchers in the field of battery research. The effectiveness and simplicity of the cell design have been demonstrated at Powder Diffraction Beamline at Australian Synchrotron for several user groups. Case studies of analysis of the lithium insertion reaction for Li0.18Sr0.66Ti0.5Nb0.5O3 defect perovskite [1], crystal structure of Li4Ti5O12–xBrx electrode material [2] and LiNi1/3Mn1/3Co1/3O2 (NMC) as a new synthesized cathode material [3] will be discussed, respectively.
APA, Harvard, Vancouver, ISO, and other styles
31

Dutta, Pulak. "Studies of monolayers using synchrotron X-ray diffraction." Current Opinion in Solid State and Materials Science 2, no. 5 (October 1997): 557–62. http://dx.doi.org/10.1016/s1359-0286(97)80044-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kamishima, K., T. Noda, F. Kadonome, K. Kakizaki, and N. Hiratsuka. "Synchrotron X-ray diffraction for pyrolytic magnetic carbon." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): e346-e348. http://dx.doi.org/10.1016/j.jmmm.2006.10.325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Barroso, R. C., M. J. Anjos, R. T. Lopes, E. F. O. de Jesus, S. M. Simabuco, D. Braz, and C. R. F. Castro. "Matrix characterization using synchrotron radiation X-ray diffraction." Radiation Physics and Chemistry 61, no. 3-6 (June 2001): 739–41. http://dx.doi.org/10.1016/s0969-806x(01)00392-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Cernik, R. J., and P. Barnes. "Industrial aspects of synchrotron X-ray powder diffraction." Radiation Physics and Chemistry 45, no. 3 (March 1995): 445–57. http://dx.doi.org/10.1016/0969-806x(94)00147-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sosnowska, I. M., and M. Shiojiri. "Oxides: neutron and synchrotron X-ray diffraction studies." Journal of Electron Microscopy 48, no. 6 (January 1, 1999): 681–87. http://dx.doi.org/10.1093/oxfordjournals.jmicro.a023736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Carpentier, P., C. Berthet-Colominas, M. Capitan, M. L. Chesne, E. Fanchon, R. Kahn, S. Lequien, et al. "Anomalous Diffraction with Soft X-ray Synchrotron Radiation." Acta Crystallographica Section A Foundations of Crystallography 56, s1 (August 25, 2000): s61. http://dx.doi.org/10.1107/s0108767300022054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Quantock, Andrew J., Keith M. Meek, Eugene J.-M. A. Thonar, and Kerry K. Assil. "Synchrotron X-ray diffraction in atypical macular dystrophy." Eye 7, no. 6 (November 1993): 779–84. http://dx.doi.org/10.1038/eye.1993.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Katsumata, Koichi, Akiko Kikkawa, Yoshikazu Tanaka, Susumu Shimomura, Shuji Ebisu, and Shoichi Nagata. "Synchrotron X-ray Diffraction Studies of α-Gd2S3." Journal of the Physical Society of Japan 74, no. 5 (May 15, 2005): 1598–601. http://dx.doi.org/10.1143/jpsj.74.1598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Antonio, Selma Gutierrez, Fernanda Ribeiro Benini, Fabio Furlan Ferreira, Paulo César Pires Rosa, and Carlos de Oliveira Paiva-Santos. "Synchrotron X-ray powder diffraction data of atorvastatin." Powder Diffraction 23, no. 4 (December 2008): 350–55. http://dx.doi.org/10.1154/1.2996511.

Full text
Abstract:
X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze form I of atorvastatin. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.3771 Å. Form I of atorvastatin was found to be triclinic with space group P1 and unit cell parameters a=5.4568(2) Å, b=9.8887(4) Å, c=30.3091(9) Å, α=76.801(3)°, β=99.177(5)°, γ=105.318(5)°, V=1527.1(1) Å3, Z=1, and M=1209.41 g mol−1 Alternatively, another unit cell dimension can be used to describe the same P1 crystal with a=5.4564(2) Å, b=9.8883(4) Å, c=29.6555(8) Å, α=95.745(3)°, β=94.297(5)°, γ=105.327(5)°, and V=1526.8(1) Å3.
APA, Harvard, Vancouver, ISO, and other styles
40

Kingma, Kathleen J., Ho-Kwang Mao, and Russell J. Hemley. "Synchrotron X-ray diffraction of SiO2to multimegabar pressures." High Pressure Research 14, no. 4-6 (January 1996): 363–74. http://dx.doi.org/10.1080/08957959608201422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Rieck, Wolfgang, Heinz Schulz, and Monika Siedel. "X-Ray diffraction on microcrystals with synchrotron radiation." Journal of Physics and Chemistry of Solids 52, no. 10 (January 1991): 1289–91. http://dx.doi.org/10.1016/0022-3697(91)90205-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Parrish, W., M. Hart, C. G. Erickson, N. Masciocchi, and T. C. Huang. "Instrumentation for Synchrotron X-Ray Powder Diffractometry." Advances in X-ray Analysis 29 (1985): 243–50. http://dx.doi.org/10.1154/s0376030800010326.

Full text
Abstract:
AbstractThe instrumentation developed for poly crystalline diffractometry using the storage ring at the Stanford Synchrotron Radiation Laboratory is described. A pair of automated vertical scan diffractometers was used for a Si (111) channel monochromator and the powder specimens. The parallel beam powder diffraction was defined by horizontal parallel slits which had several times higher intensity than a receiving slit at the same resolution. The patterns were obtained with 2:1 scanning with’ a selected monochromatic beam, and an energy dispersive diffraction method in which the monochromator is step-scanned, and the specimen and scintillation counter are fixed. Both methods use the same instrumentation.
APA, Harvard, Vancouver, ISO, and other styles
43

Peng, Hong Yu, Ze Yu Chen, Ya Fei Liu, Qian Yu Cheng, Shan Shan Hu, Xian Rong Huang, Lahsen Assoufid, Balaji Raghothamachar, and Michael Dudley. "Dislocation Contrast Analysis in Weak Beam Synchrotron X-Ray Topography." Materials Science Forum 1062 (May 31, 2022): 356–60. http://dx.doi.org/10.4028/p-u7m9jr.

Full text
Abstract:
Synchrotron monochromatic beam X-ray topography has been widely applied to characterize structural defects in SiC crystals. Using ray tracing simulations, the dislocation contrast in X-ray topography under strong diffraction conditions (diffraction takes place at or near Bragg angle) has been intensively investigated. However, the contrast and the configurations of the dislocation images recorded under weak diffraction conditions have not been fully investigated. Recently, we demonstrated that the contrast of dislocations in synchrotron grazing incidence topography under weak diffraction conditions can also be analyzed and interpreted by applying ray tracing principles. In this study, we have extended the application of the ray tracing method to analyze the dislocation contrast in weak beam synchrotron back reflection and rocking curve topography. The ray tracing method is shown to successfully simulate and correlate the contrast of threading screw dislocations at various positions on the rocking curve and thus allow to determine the signs of Burgers vectors.
APA, Harvard, Vancouver, ISO, and other styles
44

Chen, Liu Ran, Xi Chen, Ji Cai Liang, and Ji Dong Zhang. "Analysis the Actual Nanostructure of α Phase Polyoctylfluorene Thin Film via Synchrotron Grazing-Incidence X-Ray Diffraction." Applied Mechanics and Materials 333-335 (July 2013): 1832–35. http://dx.doi.org/10.4028/www.scientific.net/amm.333-335.1832.

Full text
Abstract:
The nanostructure of α phase polyoctylfluorene thin film was characterized using normal X-ray diffraction, one-dimensional out-of-plane grazing incidence X-ray diffraction and two-dimensional grazing incidence X-ray diffraction with lab diffractometer and synchrotron diffractometer. The results show that using grazing incidence X-ray diffraction the weak diffraction signal of thin film can be observed after the elimination of background signals. Incorrect (h10) diffraction signals can be collected by lab diffractometer due to its low collimation and resolution, which can be overcome by using synchrotron diffractometer with high collimation and resolution that reveal the actual microstructure of polyoctylfluorene thin film.
APA, Harvard, Vancouver, ISO, and other styles
45

Authier, André. "Une découverte qui a changé le monde : la diffraction des rayons X." Reflets de la physique, no. 39 (May 2014): 24–29. http://dx.doi.org/10.1051/refdp/201439024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Popescu, M., W. Hoyer, M. Stegarescu, A. Cornet, and N. Broll. "Diffraction de rayons X sur les plaquettes de fer durcies par cyanuration." Journal de Physique IV (Proceedings) 118 (November 2004): 351–53. http://dx.doi.org/10.1051/jp4:2004118041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chacon, C., O. Isnard, and J. F. Bérar. "Étude structurale des composés YCo4-xNixB par diffraction anomale des rayons X." Journal de Physique IV (Proceedings) 118 (November 2004): 419–29. http://dx.doi.org/10.1051/jp4:2004118049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Maeder, G. "Développements actuels de la détermination des contraintes par diffraction des rayons X." Matériaux & Techniques 76, no. 9-10 (1988): 5–12. http://dx.doi.org/10.1051/mattech/198876090005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Louër, D. "La diffraction des rayons X par les poudres cent ans après Röntgen." Le Journal de Physique IV 06, no. C4 (July 1996): C4–57—C4–69. http://dx.doi.org/10.1051/jp4:1996407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lepore, G. O., S. Checchia, T. Baroni, M. Brunelli, and F. d’Acapito. "Outstation for x-ray powder diffraction at the Italian beamline at the European synchrotron." Review of Scientific Instruments 93, no. 11 (November 1, 2022): 113903. http://dx.doi.org/10.1063/5.0107024.

Full text
Abstract:
LISA [ Linea Italiana per la Spettroscopia di Assorbimento X, Italian beamline for X-ray Absorption Spectroscopy (XAS)] is the Italian CRG ( Collaborating Research Group) beamline at the ESRF ( European Synchrotron Radiation Facility) dedicated to XAS [d’Acapito et al., J. Synchrotron Radiat. 26, 551–558 (2019)]. In this work, a methodical test of the LISA beamline in performing diffraction measurements is carried out. Synchrotron x-ray diffraction measurements would complement absorption spectroscopy techniques with the long-range characterization of the material under investigation, while XAS provides the short-range element selective information.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography