Dissertations / Theses on the topic 'Differential probability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Differential probability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Athreya, Siva. "Probability and semilinear partial differential equations /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5799.
Full textFedrizzi, Ennio. "Partial Differential Equation and Noise." Phd thesis, Université Paris-Diderot - Paris VII, 2012. http://tel.archives-ouvertes.fr/tel-00759355.
Full textChen, Linan Ph D. Massachusetts Institute of Technology. "Applications of probability to partial differential equations and infinite dimensional analysis." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67787.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 79-80).
This thesis consists of two parts. The first part applies a probabilistic approach to the study of the Wright-Fisher equation, an equation which is used to model demographic evolution in the presence of diffusion. The fundamental solution to the Wright-Fisher equation is carefully analyzed by relating it to the fundamental solution to a model equation which has the same degeneracy at one boundary. Estimates are given for short time behavior of the fundamental solution as well as its derivatives near the boundary. The second part studies the probabilistic extensions of the classical Cauchy functional equation for additive functions both in finite and infinite dimensions. The connection between additivity and linearity is explored under different circumstances, and the techniques developed in the process lead to results about the structure of abstract Wiener spaces. Both parts are joint work with Daniel W. Stroock.
by Linan Chen.
Ph.D.
Treacy, Brian. "A stochastic differential equation derived from evolutionary game theory." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-377554.
Full textCalatayud, Gregori Julia. "Computational methods for random differential equations: probability density function and estimation of the parameters." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/138396.
Full text[ES] Los modelos matemáticos basados en ecuaciones diferenciales deterministas no tienen en cuenta la incertidumbre inherente del fenómeno físico (en un sentido amplio) bajo estudio. Además, a menudo se producen inexactitudes en los datos recopilados debido a errores en las mediciones. Por lo tanto, es necesario tratar los parámetros de entrada del modelo como cantidades aleatorias, en forma de variables aleatorias o procesos estocásticos. Esto da lugar al estudio de las ecuaciones diferenciales aleatorias. El cálculo de la función de densidad de probabilidad de la solución estocástica es importante en la cuantificación de la incertidumbre de la respuesta del modelo. Aunque dicho cálculo es un objetivo difícil en general, ciertas expansiones estocásticas para los coeficientes del modelo dan lugar a representaciones fieles de la solución estocástica, lo que permite aproximar su función de densidad. En este sentido, las expansiones de Karhunen-Loève y de caos polinomial generalizado constituyen herramientas para dicha aproximación de la densidad. Además, los métodos basados en discretizaciones de esquemas numéricos de diferencias finitas permiten aproximar la solución estocástica, por lo tanto, su función de densidad de probabilidad. La parte principal de esta disertación tiene como objetivo aproximar la función de densidad de probabilidad de modelos matemáticos importantes con incertidumbre en su formulación. Concretamente, en esta memoria se estudian, en un sentido estocástico, los siguientes modelos que aparecen en diferentes áreas científicas: en Física, el modelo del péndulo amortiguado; en Biología y Epidemiología, los modelos de crecimiento logístico y de Bertalanffy, así como modelos de tipo epidemiológico; y en Termodinámica, la ecuación en derivadas parciales del calor. Utilizamos expansiones de Karhunen-Loève y de caos polinomial generalizado y esquemas de diferencias finitas para la aproximación de la densidad de la solución. Estas técnicas solo son aplicables cuando tenemos un modelo directo en el que los parámetros de entrada ya tienen determinadas distribuciones de probabilidad establecidas. Cuando los coeficientes del modelo se estiman a partir de los datos recopilados, tenemos un problema inverso. El enfoque de inferencia Bayesiana permite estimar la distribución de probabilidad de los parámetros del modelo a partir de su distribución de probabilidad previa y la verosimilitud de los datos. La cuantificación de la incertidumbre para la respuesta del modelo se lleva a cabo utilizando la distribución predictiva a posteriori. En este sentido, la última parte de la tesis muestra la estimación de las distribuciones de los parámetros del modelo a partir de datos experimentales sobre el crecimiento de bacterias. Para hacerlo, se utiliza un método híbrido que combina la estimación de parámetros Bayesianos y los desarrollos de caos polinomial generalizado.
[CAT] Els models matemàtics basats en equacions diferencials deterministes no tenen en compte la incertesa inherent al fenomen físic (en un sentit ampli) sota estudi. A més a més, sovint es produeixen inexactituds en les dades recollides a causa d'errors de mesurament. Es fa així necessari tractar els paràmetres d'entrada del model com a quantitats aleatòries, en forma de variables aleatòries o processos estocàstics. Açò dóna lloc a l'estudi de les equacions diferencials aleatòries. El càlcul de la funció de densitat de probabilitat de la solució estocàstica és important per a quantificar la incertesa de la sortida del model. Tot i que, en general, aquest càlcul és un objectiu difícil d'assolir, certes expansions estocàstiques dels coeficients del model donen lloc a representacions fidels de la solució estocàstica, el que permet aproximar la seua funció de densitat. En aquest sentit, les expansions de Karhunen-Loève i de caos polinomial generalitzat esdevenen eines per a l'esmentada aproximació de la densitat. A més a més, els mètodes basats en discretitzacions mitjançant esquemes numèrics de diferències finites permeten aproximar la solució estocàstica, per tant la seua funció de densitat de probabilitat. La part principal d'aquesta dissertació té com a objectiu aproximar la funció de densitat de probabilitat d'importants models matemàtics amb incerteses en la seua formulació. Concretament, en aquesta memòria s'estudien, en un sentit estocàstic, els següents models que apareixen en diferents àrees científiques: en Física, el model del pèndol amortit; en Biologia i Epidemiologia, els models de creixement logístic i de Bertalanffy, així com models de tipus epidemiològic; i en Termodinàmica, l'equació en derivades parcials de la calor. Per a l'aproximació de la densitat de la solució, ens basem en expansions de Karhunen-Loève i de caos polinomial generalitzat i en esquemes de diferències finites. Aquestes tècniques només són aplicables quan tenim un model cap avant en què els paràmetres d'entrada tenen ja determinades distribucions de probabilitat. Quan els coeficients del model s'estimen a partir de les dades recollides, tenim un problema invers. L'enfocament de la inferència Bayesiana permet estimar la distribució de probabilitat dels paràmetres del model a partir de la seua distribució de probabilitat prèvia i la versemblança de les dades. La quantificació de la incertesa per a la resposta del model es fa mitjançant la distribució predictiva a posteriori. En aquest sentit, l'última part de la tesi mostra l'estimació de les distribucions dels paràmetres del model a partir de dades experimentals sobre el creixement de bacteris. Per a fer-ho, s'utilitza un mètode híbrid que combina l'estimació de paràmetres Bayesiana i els desenvolupaments de caos polinomial generalitzat.
This work has been supported by the Spanish Ministerio de Econom´ıa y Competitividad grant MTM2017–89664–P.
Calatayud Gregori, J. (2020). Computational methods for random differential equations: probability density function and estimation of the parameters [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138396
TESIS
Premiado
Köhnlein, Dieter. "Asymptotisches Verhalten von Lösungen stochastischer linearer Differenzengleichungen im Rd." Bonn : [s.n.], 1988. http://catalog.hathitrust.org/api/volumes/oclc/20267120.html.
Full textZhou, Ziqian. "Statistical inference of distributed delay differential equations." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2173.
Full textFarr, Kerry J. "Simple Behavioral Interventions for Typically Functioning Adolescents with Work Refusal in a Classroom Setting." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7556.
Full textJornet, Sanz Marc. "Mean square solutions of random linear models and computation of their probability density function." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/138394.
Full text[ES] Esta tesis trata el análisis de ecuaciones diferenciales con parámetros de entrada aleatorios, en la forma de variables aleatorias o procesos estocásticos con cualquier tipo de distribución de probabilidad. En modelización, los coeficientes de entrada se fijan a partir de datos experimentales, los cuales suelen acarrear incertidumbre por los errores de medición. Además, el comportamiento del fenómeno físico bajo estudio no sigue patrones estrictamente deterministas. Es por tanto más realista trabajar con modelos matemáticos con aleatoriedad en su formulación. La solución, considerada en el sentido de caminos aleatorios o en el sentido de media cuadrática, es un proceso estocástico suave, cuya incertidumbre se tiene que cuantificar. La cuantificación de la incertidumbre es a menudo llevada a cabo calculando los principales estadísticos (esperanza y varianza) y, si es posible, la función de densidad de probabilidad. En este trabajo, estudiamos modelos aleatorios lineales, basados en ecuaciones diferenciales ordinarias con y sin retardo, y en ecuaciones en derivadas parciales. La estructura lineal de los modelos nos permite buscar ciertas soluciones probabilísticas e incluso aproximar su función de densidad de probabilidad, lo cual es un objetivo complicado en general. Una parte muy importante de la disertación se dedica a las ecuaciones diferenciales lineales de segundo orden aleatorias, donde los coeficientes de la ecuación son procesos estocásticos y las condiciones iniciales son variables aleatorias. El estudio de esta clase de ecuaciones diferenciales en el contexto aleatorio está motivado principalmente por su importante papel en la Física Matemática. Empezamos resolviendo la ecuación diferencial de Legendre aleatorizada en el sentido de media cuadrática, lo que permite la aproximación de la esperanza y la varianza de la solución estocástica. La metodología se extiende al caso general de ecuaciones diferenciales lineales de segundo orden aleatorias con coeficientes analíticos (expresables como series de potencias), mediante el conocido método de Fröbenius. Se lleva a cabo un estudio comparativo con métodos espectrales basados en expansiones de caos polinomial. Por otro lado, el método de Fröbenius junto con la simulación de Monte Carlo se utilizan para aproximar la función de densidad de probabilidad de la solución. Para acelerar el procedimiento de Monte Carlo, se proponen varios métodos de reducción de la varianza basados en reglas de cuadratura y estrategias multinivel. La última parte sobre ecuaciones diferenciales lineales de segundo orden aleatorias estudia un problema aleatorio de tipo Poisson de difusión-reacción, en el que la función de densidad de probabilidad es aproximada mediante un esquema numérico de diferencias finitas. En la tesis también se tratan ecuaciones diferenciales ordinarias aleatorias con retardo discreto y constante. Estudiamos el caso lineal y autónomo, cuando el coeficiente de la componente no retardada i el parámetro del término retardado son ambos variables aleatorias mientras que la condición inicial es un proceso estocástico. Se demuestra que la solución determinista construida con el método de los pasos y que involucra la función exponencial retardada es una solución probabilística en el sentido de Lebesgue. Finalmente, el último capítulo lo dedicamos a la ecuación en derivadas parciales lineal de advección, sujeta a velocidad y condición inicial estocásticas. Resolvemos la ecuación en el sentido de media cuadrática y damos nuevas expresiones para la función de densidad de probabilidad de la solución, incluso en el caso de velocidad no Gaussiana.
[CAT] Aquesta tesi tracta l'anàlisi d'equacions diferencials amb paràmetres d'entrada aleatoris, en la forma de variables aleatòries o processos estocàstics amb qualsevol mena de distribució de probabilitat. En modelització, els coeficients d'entrada són fixats a partir de dades experimentals, les quals solen comportar incertesa pels errors de mesurament. A més a més, el comportament del fenomen físic sota estudi no segueix patrons estrictament deterministes. És per tant més realista treballar amb models matemàtics amb aleatorietat en la seua formulació. La solució, considerada en el sentit de camins aleatoris o en el sentit de mitjana quadràtica, és un procés estocàstic suau, la incertesa del qual s'ha de quantificar. La quantificació de la incertesa és sovint duta a terme calculant els principals estadístics (esperança i variància) i, si es pot, la funció de densitat de probabilitat. En aquest treball, estudiem models aleatoris lineals, basats en equacions diferencials ordinàries amb retard i sense, i en equacions en derivades parcials. L'estructura lineal dels models ens fa possible cercar certes solucions probabilístiques i inclús aproximar la seua funció de densitat de probabilitat, el qual és un objectiu complicat en general. Una part molt important de la dissertació es dedica a les equacions diferencials lineals de segon ordre aleatòries, on els coeficients de l'equació són processos estocàstics i les condicions inicials són variables aleatòries. L'estudi d'aquesta classe d'equacions diferencials en el context aleatori està motivat principalment pel seu important paper en Física Matemàtica. Comencem resolent l'equació diferencial de Legendre aleatoritzada en el sentit de mitjana quadràtica, el que permet l'aproximació de l'esperança i la variància de la solució estocàstica. La metodologia s'estén al cas general d'equacions diferencials lineals de segon ordre aleatòries amb coeficients analítics (expressables com a sèries de potències), per mitjà del conegut mètode de Fröbenius. Es duu a terme un estudi comparatiu amb mètodes espectrals basats en expansions de caos polinomial. Per altra banda, el mètode de Fröbenius juntament amb la simulació de Monte Carlo són emprats per a aproximar la funció de densitat de probabilitat de la solució. Per a accelerar el procediment de Monte Carlo, es proposen diversos mètodes de reducció de la variància basats en regles de quadratura i estratègies multinivell. L'última part sobre equacions diferencials lineals de segon ordre aleatòries estudia un problema aleatori de tipus Poisson de difusió-reacció, en què la funció de densitat de probabilitat és aproximada mitjançant un esquema numèric de diferències finites. En la tesi també es tracten equacions diferencials ordinàries aleatòries amb retard discret i constant. Estudiem el cas lineal i autònom, quan el coeficient del component no retardat i el paràmetre del terme retardat són ambdós variables aleatòries mentre que la condició inicial és un procés estocàstic. Es prova que la solució determinista construïda amb el mètode dels passos i que involucra la funció exponencial retardada és una solució probabilística en el sentit de Lebesgue. Finalment, el darrer capítol el dediquem a l'equació en derivades parcials lineal d'advecció, subjecta a velocitat i condició inicial estocàstiques. Resolem l'equació en el sentit de mitjana quadràtica i donem noves expressions per a la funció de densitat de probabilitat de la solució, inclús en el cas de velocitat no Gaussiana.
This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017–89664–P. I acknowledge the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID), Universitat Politècnica de València.
Jornet Sanz, M. (2020). Mean square solutions of random linear models and computation of their probability density function [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138394
TESIS
Leman, Hélène. "Probabilistic and deterministic analysis of the evolution : influence of a spatial structure and a mating preference." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX026/document.
Full textWe study the spatial and evolutionary dynamics of a population by using probabilistic and deterministic tools. In the first part of this thesis, we are concerned with the influence of a heterogeneous environment on the evolution of species. The population is modeled by an individual-based process with some interactions and which describes the birth, the death, the mutation and the spatial diffusion of each individual. The rates of those events depend on the characteristics of the individuals : their phenotypic trait and their spatial location. First, we study the system of partial differential equations that describes the spatial and demographic dynamics of a population composed of two traits in a large population limit. We characterize precisely the conditions of extinction and long time survival for this population. Secondly, we study the initial individual-based model under two asymptotic: large population and rare mutations such as demographic and mutational timescales are separated. Thus, when a mutant appears, the resident population has reached its demographic balance. We characterize the survival probability of the population descended from this mutant. Then, by studyingthe process in the mutational scale, we prove that the microscopic process converges to a jump process which describes the successive fixations of the most advantaged traits and the spatial distribution of populations carrying these traits. We then extend the model to introduce mutualistic interactions between two species. We study this model in a limit of large population. We also give numerical results and a detailed biological behavior analysis around two issues: the co-evolution of phenotypic and spatial niches of mutualistic species and the invasion dynamics of a homogeneous space by these species. In the second part of this thesis, we develop a probabilistic model to study the effect of the sexual preference on the speciation. Here, the population is structured on two patches and the individuals, characterized by a trait, are ecologically and demographically similar and differ only in their sexual preferences: two individuals of the same trait are more likely to reproduce than two individuals of distinct traits. We show that in the absence of any other ecological differences, the sexual preferences lead to reproductive isolation between the two patches
Navarro, Quiles Ana. "COMPUTATIONAL METHODS FOR RANDOM DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/98703.
Full textEver since the early contributions by Isaac Newton, Gottfried Wilhelm Leibniz, Jacob and Johann Bernoulli in the XVII century until now, difference and differential equations have uninterruptedly demonstrated their capability to model successfully interesting complex problems in Engineering, Physics, Chemistry, Epidemiology, Economics, etc. But, from a practical standpoint, the application of difference or differential equations requires setting their inputs (coefficients, source term, initial and boundary conditions) using sampled data, thus containing uncertainty stemming from measurement errors. In addition, there are some random external factors which can affect to the system under study. Then, it is more advisable to consider input data as random variables or stochastic processes rather than deterministic constants or functions, respectively. Under this consideration random difference and differential equations appear. This thesis makes a trail by solving, from a probabilistic point of view, different types of random difference and differential equations, applying fundamentally the Random Variable Transformation method. This technique is an useful tool to obtain the probability density function of a random vector that results from mapping another random vector whose probability density function is known. Definitely, the goal of this dissertation is the computation of the first probability density function of the solution stochastic process in different problems, which are based on random difference or differential equations. The interest in determining the first probability density function is justified because this deterministic function characterizes the one-dimensional probabilistic information, as mean, variance, asymmetry, kurtosis, etc. of corresponding solution of a random difference or differential equation. It also allows to determine the probability of a certain event of interest that involves the solution. In addition, in some cases, the theoretical study carried out is completed, showing its application to modelling problems with real data, where the problem of parametric statistics distribution estimation is addressed in the context of random difference and differential equations.
Des de les contribucions de Isaac Newton, Gottfried Wilhelm Leibniz, Jacob i Johann Bernoulli al segle XVII fins a l'actualitat, les equacions en diferències i les diferencials han demostrat la seua capacitat per a modelar satisfactòriament problemes complexos de gran interés en Enginyeria, Física, Epidemiologia, etc. Però, des d'un punt de vista pràctic, els paràmetres o inputs (condicions inicials/frontera, terme font i/o coeficients), que apareixen en aquests problemes, són fixats a partir de certes dades, les quals poden contenir errors de mesura. A més, poden existir factors externs que afecten el sistema objecte d'estudi, de manera que, la seua complexitat faça que no es conega de forma certa els inputs de l'equació que modelitza el problema. Tot aço justifica la necessitat de considerar els paràmetres de l'equació en diferències o de la equació diferencial com a variables aleatòries o processos estocàstics, i no com constants o funcions deterministes. Sota aquesta consideració apareixen les equacions en diferències i les equacions diferencials aleatòries. Aquesta tesi fa un recorregut resolent, des d'un punt de vista probabilístic, diferents tipus d'equacions en diferències i diferencials aleatòries, aplicant fonamentalment el mètode de Transformació de Variables Aleatòries. Aquesta tècnica és una eina útil per a l'obtenció de la funció de densitat de probabilitat d'un vector aleatori, que és una transformació d'un altre vector aleatori i la funció de densitat de probabilitat és del qual és coneguda. En definitiva, l'objectiu d'aquesta tesi és el càlcul de la primera funció de densitat de probabilitat del procés estocàstic solució en diversos problemes basats en equacions en diferències i diferencials. L'interés per determinar la primera funció de densitat es justifica perquè aquesta funció determinista caracteritza la informació probabilística unidimensional, com la mitjana, variància, asimetria, curtosis, etc., de la solució de l'equació en diferències o l'equació diferencial aleatòria corresponent. També permet determinar la probabilitat que esdevinga un determinat succés d'interés que involucre la solució. A més, en alguns casos, l'estudi teòric realitzat es completa mostrant la seua aplicació a problemes de modelització amb dades reals, on s'aborda el problema de l'estimació de distribucions estadístiques paramètriques dels inputs en el context de les equacions en diferències i diferencials aleatòries.
Navarro Quiles, A. (2018). COMPUTATIONAL METHODS FOR RANDOM DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/98703
TESIS
Lionnet, Arnaud. "Topics on backward stochastic differential equations : theoretical and practical aspects." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:0c1154d0-61ac-428a-8ef7-29a546f2da42.
Full textJanssen, Arend. "Order book models, signatures and numerical approximations of rough differential equations." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:264e96b3-f449-401b-8768-337acab59cab.
Full textYang, Weiye. "Stochastic analysis and stochastic PDEs on fractals." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:43a7af74-c531-424a-9f3d-4277138affbb.
Full textDe, Marco Stefano. "On probability distributions of diffusions and financial models with non-globally smooth coefficients." Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00588686.
Full textKühn, Franziska. "Probability and Heat Kernel Estimates for Lévy(-Type) Processes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-214839.
Full textPokhrel, Nawa Raj. "Statistical Analysis and Modeling of Cyber Security and Health Sciences." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7703.
Full textRowley, Jordan M. "The Martingale Approach to Financial Mathematics." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2014.
Full textGyurko, Lajos Gergely. "Numerical methods for approximating solutions to rough differential equations." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:d977be17-76c6-46d6-8691-6d3b7bd51f7a.
Full textJones, Paul. "Unitary double products as implementors of Bogolubov transformations." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/14306.
Full textAlu, Kelechukwu Iroajanma. "Solving the Differential Equation for the Probit Function Using a Variant of the Carleman Embedding Technique." Digital Commons @ East Tennessee State University, 2011. https://dc.etsu.edu/etd/1306.
Full textDabrowski, Yoann. "Free entropies, free Fisher information, free stochastic differential equations, with applications to Von Neumann algebras." Thesis, Paris Est, 2010. http://www.theses.fr/2010PEST1015.
Full textThis works extends our knowledge of free entropies, free Fisher information and free stochastic differential equations in three directions. First, we prove that if a $W^{*}$-probability space generated by more than 2 self-adjoints with finite non-microstates free Fisher information doesn't have property $Gamma$ of Murray and von Neumann (especially is not amenable). This is an analogue of a well-known result of Voiculescu for microstates free entropy. We also prove factoriality under finite non-microstates entropy. Second, we study a general free stochastic differential equation with unbounded coefficients (``stochastic PDE"), and prove stationarity of solutions in well-chosen cases. This leads to a computation of microstates free entropy dimension in case of Lipschitz conjugate variable. Finally, we introduce a non-commutative path space approach to solve general stationary free Stochastic differential equations. By defining tracial states on a non-commutative analogue of a path space, we construct Markov dilations for a class of conservative completely Markov semigroups on finite von Neumann algebras. This class includes all symmetric semigroups. For well chosen semigroups (for instance with generator any divergence form operator associated to a derivation valued in the coarse correspondence) those dilations give rise to stationary solutions of certain free SDEs. Among applications, we prove a non-commutative Talagrand inequality for non-microstate free entropy (relative to a subalgebra $B$ and a completely positive map $eta:Bto B$). We also use those new deformations in conjunction with Popa's deformation/rigidity techniques, to get absence of Cartan subalgebra results
Almada, Monter Sergio Angel. "Scaling limit for the diffusion exit problem." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39518.
Full textPedjeu, Jean-Claude. "Multi-time Scales Stochastic Dynamic Processes: Modeling, Methods, Algorithms, Analysis, and Applications." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4383.
Full textChu, Casey. "The Geometry of Data: Distance on Data Manifolds." Scholarship @ Claremont, 2016. https://scholarship.claremont.edu/hmc_theses/74.
Full textLiang, Gechun. "A functional approach to backward stochastic dynamics." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:afb9af6f-c79c-4204-838d-2a4872c1c796.
Full textGasper, Rebecca Elizabeth. "Action potentials in the peripheral auditory nervous system : a novel PDE distribution model." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1321.
Full textShabala, Alexander. "Mathematical modelling of oncolytic virotherapy." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:cca2c9bc-cbd4-4651-9b59-8a4dea7245d1.
Full textSchwarz, Daniel Christopher. "Price modelling and asset valuation in carbon emission and electricity markets." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7de118d2-a61b-4125-a615-29ff82ac7316.
Full textWallman, Kaj Mikael Joakim. "Computational methods for the estimation of cardiac electrophysiological conduction parameters in a patient specific setting." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:2d5573b9-5115-4434-b9c8-60f8d0531f86.
Full textSaadat, Sajedeh, and Timo Kudljakov. "Deterministic Quadrature Formulae for the Black–Scholes Model." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54612.
Full textSchöön, Jonathan. "Pricing Put Options with Multilevel Monte Carlo Simulation." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55404.
Full textMora, Marianne. "Sur la geometrie differentielle en statistique : sur la convergence des suites de fonctions variance des familles exponentielles naturelles." Toulouse 3, 1988. http://www.theses.fr/1988TOU30044.
Full textCheng, Gang. "Analyzing and Solving Non-Linear Stochastic Dynamic Models on Non-Periodic Discrete Time Domains." TopSCHOLAR®, 2013. http://digitalcommons.wku.edu/theses/1236.
Full textKleinen, Thomas Christopher. "Stochastic information in the assessment of climate change." Phd thesis, [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975745441.
Full textSchmidt, Daniel. "Kinetic Monte Carlo Methods for Computing First Capture Time Distributions in Models of Diffusive Absorption." Scholarship @ Claremont, 2017. https://scholarship.claremont.edu/hmc_theses/97.
Full textБайбуз, Микола Андрійович. "Уточнений метод оцінювання імовірностей диференціалів немарковських AES – подібних шифрів." Master's thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/23502.
Full textThe thesis is presented in 43 pages. It contains 2 appendixes and bibliography of 16 references. Four figures and 2 tables are given in the thesis. The goal of the thesis is the analysis, specification and application of research methods Markov SP-networks for resistance to differential cryptanalysis. The object of research is the information processes in cryptographic protection systems. The subject of research is estimation of SP-networks algorithms for resistance to differential cryptanalysis. In the presented thesis the Markov SP-networks resistance to differential cryptoanalysis is assessed, taking the DSTU 7624:2014 cipher as the illustrative example. Main ideas of the thesis were published in the Proceedings of the International Practical and Technical Conference БГО!ТС 2016.
Дипломную работу выполнено на 43 листах, она содержит 2 приложения и перечень использованных источников из 16 наименований. В работе приведены 3 рисунки и 4 таблицы. Целью данной работы является анализ, уточнение и применение методов исследования марковских SP-сетей на устойчивость к дифференциальному криптоанализу. Объектом исследования являются процессы в системах криптографической защиты. Предметом исследования являются алгоритмы оценки SP-сетей на устойчивость к дифференциальному криптоанализу. В работе проводится уточнение и применение методов для оценки устойчивости SP-сетей к дифференциальному криптоанализу на примере шифра ДСТУ 7624:2014. Основные положения дипломной работы опубликованы в виде тезисов на Международной научно-практической конференции БИВИТС 2016 и Всеукраинской научно-практической коференции ТИППФМТИ 2016.
De, Franco Carmine. "Deux études en gestion de risque: assurance de portefeuille avec contrainte en risque et couverture quadratique dans les modèles a sauts." Phd thesis, Université Paris-Diderot - Paris VII, 2012. http://tel.archives-ouvertes.fr/tel-00708397.
Full textXu, Yong. "Statistical Models for Environmental and Health Sciences." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3414.
Full textSteven, Adelina. "Risk Assessment of Dropped Cylindrical Objects in Offshore Operations." ScholarWorks@UNO, 2018. https://scholarworks.uno.edu/td/2495.
Full textMlakar, Joseph A. "Aggregate models for target acquisition in urban terrain." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FMlakar.pdf.
Full textThesis advisor(s): Craig W. Rasmussen, Thomas M. Cioppa. Includes bibliographical references (p. 131-132). Also available online.
Anar, Hatice. "Credit Risk Modeling And Credit Default Swap Pricing Under Variance Gamma Process." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609840/index.pdf.
Full textBruna, Maria. "Excluded-volume effects in stochastic models of diffusion." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:020c2d3e-5fef-478c-9861-553cd310daf5.
Full textDe, Scheemaekere Xavier. "Essays in mathematical finance and in the epistemology of finance." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209938.
Full textDoctorat en Sciences économiques et de gestion
info:eu-repo/semantics/nonPublished
Guillois, Florian. "Analyse du transport turbulent dans une zone de mélange issue de l'instabilité de Richtmyer-Meshkov à l'aide d'un modèle à fonction de densité de probabilité : Analyse du transport de l’énergie turbulente." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEC020/document.
Full textThe aim of the thesis is to simulate a turbulent mixing zone resulting from the Richtmyer-Meshkov instability using a probability density function (PDF) model. An emphasis is put on the analysis of the turbulent kinetic energy transport.To this end, we first highlight the link existing between the one-point statistics of the flow and its initial conditions at large scales. This link is expressed through the principle of permanence of large eddies, and allows to establish predictions for quantities of the mixing zone, such as its growth rate or its anisotropy.We then derive a Langevin PDF model which is able to reproduce this dependency of the statistics on the initial conditions. This model is then validated by comparing it against large eddy simulations (LES).Finally, an asymptotic analysis of the derived model helps to improve our understanding of the turbulent transport. A diffusion regime is identified, and the expression of the diffusion coefficient associated with this regime confirms the influence of the permanence of large eddies on the turbulent transport.Throughout this thesis, our numerical results were based on Monte Carlo simulations for the Langevin model. In this regard, we proceeded to the development of a specific Eulerian method and its comparison with Lagrangian counterparts
Le, cavil Anthony. "Représentation probabiliste de type progressif d'EDP nonlinéaires nonconservatives et algorithmes particulaires." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLY023.
Full textThis thesis performs forward probabilistic representations of nonlinear and nonconservative Partial Differential Equations (PDEs), which allowto numerically estimate the corresponding solutions via an interacting particle system algorithm, mixing Monte-Carlo methods and non-parametric density estimates.In the literature, McKean typeNonlinear Stochastic Differential Equations (NLSDEs) constitute the microscopic modelof a class of PDEs which are conservative. The solution of a NLSDEis generally a couple $(Y,u)$ where $Y$ is a stochastic process solving a stochastic differential equation whose coefficients depend on $u$ and at each time $t$, $u(t,cdot)$ is the law density of the random variable $Y_t$.The main idea of this thesis is to consider this time a non-conservative PDE which is the result of a conservative PDE perturbed by a term of the type $Lambda(u, nabla u) u$. In this case, the solution of the corresponding NLSDE is again a couple $(Y,u)$, where again $Y$ is a stochastic processbut where the link between the function $u$ and $Y$ is more complicated and once fixed the law of $Y$, $u$ is determined by a fixed pointargument via an innovating Feynmann-Kac type formula
Mélykúti, Bence. "Theoretical advances in the modelling and interrogation of biochemical reaction systems : alternative formulations of the chemical Langevin equation and optimal experiment design for model discrimination." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d368c04c-b611-41b2-8866-cde16b283b0d.
Full textLourenço, José. "Unifying the epidemiological, ecological and evolutionary dynamics of Dengue." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:cb4db8dd-5467-4c6e-8d3e-3e0fe738bc0a.
Full textErdogan, Ahmet Yasin. "Analysis of the effects of phase noise and frequency offset in orthogonal frequency division multiplexing (OFDM) systems." Thesis, Monterey California. Naval Postgraduate School, 2004. http://hdl.handle.net/10945/1712.
Full textOrthogonal frequency division multiplexing (OFDM) is being successfully used in numerous applications. It was chosen for IEEE 802.11a wireless local area network (WLAN) standard, and it is being considered for the fourthgeneration mobile communication systems. Along with its many attractive features, OFDM has some principal drawbacks. Sensitivity to frequency errors is the most dominant of these drawbacks. In this thesis, the frequency offset and phase noise effects on OFDM based communication systems are investigated under a variety of channel conditions covering both indoor and outdoor environments. The simulation performance results of the OFDM system for these channels are presented.
Lieutenant Junior Grade, Turkish Navy
VanDerwerken, Douglas Nielsen. "Variable Selection and Parameter Estimation Using a Continuous and Differentiable Approximation to the L0 Penalty Function." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2486.
Full text