Academic literature on the topic 'Differential graded Lie algebras'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Differential graded Lie algebras.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Differential graded Lie algebras"
Piontkovskii, D. I. "On differential graded Lie algebras." Russian Mathematical Surveys 58, no. 1 (February 28, 2003): 189–90. http://dx.doi.org/10.1070/rm2003v058n01abeh000604.
Full textBonezzi, Roberto, and Olaf Hohm. "Duality Hierarchies and Differential Graded Lie Algebras." Communications in Mathematical Physics 382, no. 1 (February 2021): 277–315. http://dx.doi.org/10.1007/s00220-021-03973-8.
Full textKaneyuki, Soji, and Hiroshi Asano. "Graded Lie algebras and generalized Jordan triple systems." Nagoya Mathematical Journal 112 (December 1988): 81–115. http://dx.doi.org/10.1017/s002776300000115x.
Full textWulkenhaar, Raimar. "Noncommutative geometry with graded differential Lie algebras." Journal of Mathematical Physics 38, no. 6 (June 1997): 3358–90. http://dx.doi.org/10.1063/1.532048.
Full textWulkenhaar, Raimar. "Gauge theories with graded differential Lie algebras." Journal of Mathematical Physics 40, no. 2 (February 1999): 787–94. http://dx.doi.org/10.1063/1.532685.
Full textWulkenhaar, Raimar. "Graded differential lie algebras and model building." Journal of Geometry and Physics 25, no. 3-4 (May 1998): 305–25. http://dx.doi.org/10.1016/s0393-0440(97)00029-6.
Full textPei, Yufeng, and Jinwei Yang. "Strongly graded vertex algebras generated by vertex Lie algebras." Communications in Contemporary Mathematics 21, no. 08 (October 20, 2019): 1850069. http://dx.doi.org/10.1142/s0219199718500694.
Full textBudur, Nero, and Botong Wang. "Cohomology jump loci of differential graded Lie algebras." Compositio Mathematica 151, no. 8 (March 6, 2015): 1499–528. http://dx.doi.org/10.1112/s0010437x14007970.
Full textBENKHALIFA, MAHMOUD. "WHITEHEAD EXACT SEQUENCE AND DIFFERENTIAL GRADED FREE LIE ALGEBRA." International Journal of Mathematics 15, no. 10 (December 2004): 987–1005. http://dx.doi.org/10.1142/s0129167x04002673.
Full textYang, Jinwei. "Vertex algebras associated to the affine Lie algebras of abelian polynomial current algebras." International Journal of Mathematics 27, no. 05 (May 2016): 1650046. http://dx.doi.org/10.1142/s0129167x16500464.
Full textDissertations / Theses on the topic "Differential graded Lie algebras"
Fialowski, Alice, Michael Penkava, and fialowsk@cs elte hu. "Deformation Theory of Infinity Algebras." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi906.ps.
Full textYaseen, Hogar M. "Generalized root graded Lie algebras." Thesis, University of Leicester, 2018. http://hdl.handle.net/2381/42765.
Full textat, Andreas Cap@esi ac. "Graded Lie Algebras and Dynamical Systems." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1086.ps.
Full textYang, Qunfeng. "Some graded Lie algebra structures associated with Lie algebras and Lie algebroids." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0007/NQ41350.pdf.
Full textBagnoli, Lucia. "Z-graded Lie superalgebras." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14118/.
Full textPauksztello, David. "Homological properties of differential graded algebras." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493288.
Full textShklyarov, Dmytro. "Hirzebruch-Riemann-Roch theorem for differential graded algebras." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1381.
Full textMaycock, Daniel. "Properties of triangular matrix and Gorenstein differential graded algebras." Thesis, University of Newcastle upon Tyne, 2011. http://hdl.handle.net/10443/1359.
Full textChung, Myungsuk. "Lie derivations on rings of differential operators." Diss., Virginia Tech, 1995. http://hdl.handle.net/10919/37457.
Full textMartini, Alessio. "Algebras of differential operators on Lie groups and spectral multipliers." Doctoral thesis, Scuola Normale Superiore, 2010. http://hdl.handle.net/11384/85663.
Full textBooks on the topic "Differential graded Lie algebras"
1944-, Gregory Thomas Bradford, and Premet Alexander 1955-, eds. The recognition theorem for graded lie algebras in prime characteristic. Providence, R.I: American Mathematical Society, 2009.
Find full textEuler, Norbert. Continuous symmetries, Lie algebras, and differential equations. Mannheim, [Germany]: BI Wissenschaftsverlag, 1992.
Find full textV, Savelʹev M., ed. Lie algebras, geometry and Toda-type systems. New York: Cambridge University Press, 1997.
Find full textAllison, Bruce N. Lie algebras graded by the root systems BCr, r[greater than or equal to] 2. Providence, RI: American Mathematical Society, 2002.
Find full textXu, Xiaoping. Representations of Lie Algebras and Partial Differential Equations. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6391-6.
Full textMeinrenken, Eckhard. Clifford Algebras and Lie Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textSteeb, W. H. Continuous symmetries, Lie algebras, differential equations, and computer algebra. 2nd ed. Hackensack, N.J: World Scientific, 2007.
Find full textSteeb, W. H. Continuous symmetries, Lie algebras, differential equations, and computer algebra. Singapore: World Scientific, 1996.
Find full textMackenzie, K. Lie groupoids and Lie algebroids in differential geometry. Cambridge [Cambridgeshire]: Cambridge University Press, 1987.
Find full textSabinin, Lev V. Mirror geometry of lie algebras, lie groups, and homogeneous spaces. New York: Kluwer Academic Publishers, 2004.
Find full textBook chapters on the topic "Differential graded Lie algebras"
Manetti, Marco. "Differential Graded Lie Algebras." In Springer Monographs in Mathematics, 127–58. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1185-9_5.
Full textBuijs, Urtzi, Yves Félix, Aniceto Murillo, and Daniel Tanré. "Complete Differential Graded Lie Algebras." In Lie Models in Topology, 71–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54430-0_3.
Full textFélix, Yves, Stephen Halperin, and Jean-Claude Thomas. "Graded (differential) Lie algebras and Hopf algebras." In Graduate Texts in Mathematics, 283–98. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0105-9_22.
Full textStasheff, Jim. "Differential graded Lie algebras, quasi-hopf algebras and higher homotopy algebras." In Lecture Notes in Mathematics, 120–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0101184.
Full textSitaram, B. R. "Graded Lie Algebras." In Gravitation, Gauge Theories and the Early Universe, 481–85. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2577-9_24.
Full textGriffiths, Phillip, and John Morgan. "Differential Graded Algebras." In Rational Homotopy Theory and Differential Forms, 95–102. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8468-4_10.
Full textKeller, Corina. "Differential Graded Algebras." In Chern-Simons Theory and Equivariant Factorization Algebras, 41–61. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-25338-7_3.
Full textKaneyuki, Soji. "Semisimple Graded Lie Algebras." In Analysis and Geometry on Complex Homogeneous Domains, 107–26. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1366-6_9.
Full textConnett, William C., and Alan L. Schwartz. "Hypergroups and Differential Equations." In Lie Groups and Lie Algebras, 109–15. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5258-7_7.
Full textIachello, Francesco. "Differential Realizations." In Lie Algebras and Applications, 193–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44494-8_11.
Full textConference papers on the topic "Differential graded Lie algebras"
Iachello, F. "Graded Lie algebras and applications." In LATIN-AMERICAN SCHOOL OF PHYSICS XXXV ELAF; Supersymmetries in Physics and Its Applications. AIP, 2004. http://dx.doi.org/10.1063/1.1853199.
Full textPatera, J. "Graded contractions of Lie algebras, representations and tensor products." In Group Theory in Physics: Proceedings of the international symposium held in honor of Professor Marcos Moshinsky. AIP, 1992. http://dx.doi.org/10.1063/1.42858.
Full textHe, J. W., and Q. S. Wu. "Koszul differential graded algebras and modules." In 5th China–Japan–Korea International Ring Theory Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812818331_0007.
Full textIZAURIETA, FERNANDO, EDUARDO RODRÍGUEZ, ALFREDO PÉREZ, and PATRICIO SALGADO. "EXPANDING LIE AND GAUGE FREE DIFFERENTIAL ALGEBRAS THROUGH ABELIAN SEMIGROUPS." In Proceedings of the MG12 Meeting on General Relativity. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814374552_0442.
Full textWANG, HONG-YU. "NONLINEAR SCHRÖDINGER SYSTEMS ASSOCIATED WITH HERMITIAN SYMMETRIC LIE ALGEBRAS." In Proceedings of the International Conference on Modern Mathematics and the International Symposium on Differential Geometry. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776419_0017.
Full textKime, Katherine A. "Effect of the Spatial Extent of the Control in a Bilinear Control Problem for the Schroedinger Equation." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86440.
Full textSurana, K. S., and H. Vijayendra Nayak. "Computations of the Numerical Solutions of Higher Class of Navier-Stokes Equations: 2D Newtonian Fluid Flow." In ASME 2001 Engineering Technology Conference on Energy. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/etce2001-17143.
Full textReports on the topic "Differential graded Lie algebras"
Hrivnak, Jiri Hrivnak. Associated Lie Algebras and Graded Contractions of the Pauli Graded sl(3,C). Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-6-2006-47-54.
Full text