Academic literature on the topic 'Dielectric thin layer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dielectric thin layer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dielectric thin layer"
Lee, Sangwoo, Joonbong Lee, Jaeyoung Yang, and Taekjib Choi. "Study of Etch Stop Layer on Characteristics of Amorphous Aluminum Oxide Thin Film." ECS Meeting Abstracts MA2022-01, no. 21 (July 7, 2022): 2433. http://dx.doi.org/10.1149/ma2022-01212433mtgabs.
Full textGagarin, Alexander, Diana Tsyganova, Andrey Altynnikov, Andrey Komlev, and Roman Platonov. "An Adaptation of the Split-Cylinder Resonator Method for Measuring the Microwave Properties of Thin Ferroelectric Films in a “Thin Film—Substrate” Structure." Sensors 24, no. 3 (January 24, 2024): 755. http://dx.doi.org/10.3390/s24030755.
Full textShih-Chang Shei, Shih-Chang Shei, and Yichu Wang Shih-Chang Shei. "以三氧化二鋁為閘極絕緣層之銦鎵鋅氧薄膜電晶體之研究." 理工研究國際期刊 13, no. 1 (April 2023): 1–10. http://dx.doi.org/10.53106/222344892023041301001.
Full textSun, Xiao Hua, Ping Feng, Jun Zou, and Min Wu. "Dielectric Tunable Properties of Ba0.6Sr0.4TiO3 Thin Films with and without LSCO Buffer Layer." Advanced Materials Research 97-101 (March 2010): 504–9. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.504.
Full textNiu, Jia Qi, Zhen Kun Xie, Zhen Xing Yue, and Wei Qiang Wang. "Using Ferroelectric Thin Film as the Dielectric for Electrowetting-on-Dielectric." Key Engineering Materials 697 (July 2016): 227–30. http://dx.doi.org/10.4028/www.scientific.net/kem.697.227.
Full textKovalchuk, N. S., A. A. Omelchenko, V. A. Pilipenko, V. A. Solodukha, S. V. Demidovich, V. V. Kolos, V. A. Filipenia, and D. V. Shestovski. "Research of Electrophysical Properties of Thin Gate Dielectrics Obtained by Rapid Thermal Processing Method." Doklady BGUIR 20, no. 4 (June 29, 2022): 44–52. http://dx.doi.org/10.35596/1729-7648-2022-20-4-44-52.
Full textBazarova, Sayana B., Ivan G. Simakov, Chingis Zh Gulgenov, and Tumen Ch Ochirov. "Determination of the dielectric properties of water in a thin layer." Himičeskaâ fizika i mezoskopiâ 26, no. 1 (2024): 85–94. http://dx.doi.org/10.62669/17270227.2024.1.8.
Full textSenior, Thomas B. A., and John L. Volakis. "Sheet simulation of a thin dielectric layer." Radio Science 22, no. 7 (December 1987): 1261–72. http://dx.doi.org/10.1029/rs022i007p01261.
Full textBrosseau, C. "Breakdown of a thin dielectric liquid layer." IEEE Transactions on Electrical Insulation 27, no. 6 (1992): 1217–21. http://dx.doi.org/10.1109/14.204875.
Full textSvetovoy, Vitaly B. "Casimir Forces between a Dielectric and Metal: Compensation of the Electrostatic Interaction." Physics 5, no. 3 (July 25, 2023): 814–22. http://dx.doi.org/10.3390/physics5030051.
Full textDissertations / Theses on the topic "Dielectric thin layer"
STRICKER, JEFFERY T. "ORGANIC ELECTRONIC DEVICES USING CROSSLINKED POLYELECTROLYTE MULTILAYERS AS AN ULTRA-THIN DIELECTRIC MATERIAL." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1157640369.
Full textLemenager, Maxime. "Atomic Layer Deposition of thin dielectric films for high density and high reliability integrated capacitors." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI085.
Full textEnergy storage in embedded systems is still the subject of major R&D efforts as it requires a constant decrease in the volume of electronic components. It appears that the size of the discrete components, such as capacitors, is one of the brakes to the miniaturization of the final devices. Although technologies mainly based on silicon deep etching at the micrometric scale have made considerable progresses, they are now limited in terms of integration density. As a result, Murata IPS is developing a new 3D technology enabling a higher developed surface area. The use of such a matrix requires a MIM stack deposition technique such as ALD which is adapted to high aspect ratios. The aim of this thesis has been thus to integrate the MIM structure into the new 3D matrix while respecting the constraints inherent to the industry in order to give rise to the fifth generation of PICS™ technologies. The first challenge has been the achievement of sufficient step coverage of the films with an industrial equipment. A capacitance density greater than 1µF/mm² using a 10nm alumina film has been demonstrated. It also turns out that the TiN electrodes integration plays an important role on the 3D structure. Indeed, the mechanical stress had to be reduced to ensure the mechanical robustness of the structure, in particular by playing on the NH3 pulse. The metal-dielectric interfaces have also been the subject of an in-depth study where the influence of TiN oxidation during dielectric deposition has been shown and electrically characterized. This study has then led to the integration of an additional barrier material at the interfaces, producing capacitors with a 10-year lifetime under the intended voltage and temperature conditions
Castillo, Solis Maria De los angeles. "Dielectric resonator antennas and bandwidth enhancement techniques." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/dielectric-resonator-antennas-and-bandwidth-enhancement-techniques(44b64ce4-dc73-496a-b656-dc4b9c910291).html.
Full textMahadevegowda, Amoghavarsha. "Processing, microstructure and properties of polymer-based nano-composite dielectrics for capacitor applications." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:fb974b13-2ec5-4104-9f80-45d1cb97eb48.
Full textAygun, Ozyuzer Gulnur. "Growth And Characterization Of Thin Sio2 And Ta2o5 Dielectric Layers By Nd:yag Laser Oxidation." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12605968/index.pdf.
Full text748 K). It was found that better film quality is obtained at higher substrate temperatures and laser power greater than 3.36 J/cm2. Second, rf-sputtered Ta films were oxidized by laser, because Ta2O5 appears to be a good promising candidate to replace SiO2 because of its high dielectric constant, high breakdown voltage and relevant small leakage current values. It was found that the substrate temperature is an important parameter to obtain denser layers with reduced amount of suboxides and the most suitable substrate temperature range is around 350 C to 400 C. &
#946
-orthorhombic crystal structure was obtained when the substrate temperature is 350 &ndash
400 C for thinner films (up to 20 &ndash
25 nm) and 300 &ndash
350 C for thicker films (40 nm). The refractive index values of laser grown thin tantalum oxide films were between ~1.9 and 2.2 being close to those of bulk Ta2O5 (2.0 &ndash
2.2). Oxide thicknesses in uniform Gaussian&ndash
like shapes were measured as around the twice of those initial Ta films. Effective dielectric constant values reached ~26 when the substrate temperature was increased from 250 C to around 400 C. It was shown that the leakage current density level decreases with increasing substrate temperature. However, the refractive index values of the films were smaller than those of thermally grown films. Porous structure formed during laser oxidation might be the reason for lower refractive indices and can be improved by post&ndash
oxidation annealing.
DeSandre, Lewis Francis. "LASER DAMAGE MEASUREMENTS ON ALL-DIELECTRIC NARROW-BAND FILTERS." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275258.
Full textAnders, Jason Christopher. "Thin Film Growth of Dielectric Materials by Pulsed Laser Deposition." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401681886.
Full textGuerboukha, Mohamed-Amine. "Etude de l'auto-assemblage et des propriétés électroniques de monocouches moléculaires sur germanium." Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0020.
Full textIn the field of microelectronics, due to its high intrinsic carrier mobility, germanium (Ge) is emerging as a promising alternative material to replace silicon in the next generation of high-mobility and high-frequency transistors. However, unlike silicon dioxide, Ge oxide is neither stable nor of good quality. Thus, the preparation of interfacial layers to passivate and isolate Ge is necessary but still problematic. A promising approach is the use of SAMs with a high dielectric constant. In this perspective, during this work we have focused on the preparation and characterization of new SAMs based on organothiols grafted on Ge, exhibiting potential application as grid insulators. We have used hydro- and fluoro-carbonated alkyl chains, and novel bithiophene-based non-charged push-pull chromophores (PP) specially synthesized with the motivation to prepare layers with high dielectric constants by the presence of dipoles. We have adapted and developed the deoxidation/grafting technique in hydro-alcoholic solution and shown that it provides better results than the acid treatment. Indeed, such method has allowed us to obtain less rough functionalized Ge surfaces. XPS and FTIR analyses demonstrate the removal of oxide. We have measured I-V characteristics of the various SAMs using E-GaIn contacts. PP SAMs have allowed to decrease the current by a factor of 105 compared to Ge and of 104 compared to a twelve carbon atoms alkyl SAM. Statistical analyses of the electrical characteristics have been performed using TVS, and correlated with molecular levels, using IPES for probing the unoccupied levels, determination of the valence band occupied levels by XPS, and DFT calculations
El, Hajjam Khalil. "Ingénierie de jonctions tunnel pour améliorer les performances du transistor mono-électronique métallique." Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8508.
Full textAbstract: Today, several technological barriers and physical limitations arise against the miniaturization of the CMOS: leakage current, short channel effects, hot carrier effect and the reliability of the gate oxide. The single electron transistor (SET) is one of the emerging components most capable of replacing CMOS technology or provide it with complementary technology. The work of this thesis deals with the improvement of the electrical characteristics of the single electron transistor by optimizing its tunnel junctions. This optimization initially starts with a study of conduction modes through the tunnel junction. It concludes with the development of an optimized tunnel junction based on a stack of dielectric materials (mainly Al[subscript 2]O[subscript 3], H[florin]O[subscript 2] and TiO[subscript 2]), having different properties in terms of barrier heights and relative permittivities. This document, therefore, presents the theoretical formulation of the SET’s requirements and of its tunnel junctions, the development of appropriate simulation tools - based on the transmission matrix model- for the simulation of the SET tunnel junctions current, the identification of tunnel junctions optimization strategies from the simulations results and finally the experimental study and technological integration of the optimized tunnel junctions into the metallic SET fabrication process using the atomic layer deposition (ALD) technique. This work allowed to démonstrate the significance of SET tunnel junctions engineering in order to increase its operating current while reducing leakage and improving its operation at higher temperatures.
Talisa, Noah Brodzik. "Laser-Induced Damage and Ablation of Dielectrics with Few-Cycle Laser Pulses." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1609243476481238.
Full textBooks on the topic "Dielectric thin layer"
Flemming, M. A., G. N. Plested, and Philip Crellin. The Analysis of Microwave Reflections from Imperfect Dielectrics and Its Application to the Detection of Thin Solvent Layers. AEA Technology Plc, 1987.
Find full textBuchwald, Jed Z. Electrodynamics from Thomson and Maxwell to Hertz. Edited by Jed Z. Buchwald and Robert Fox. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199696253.013.20.
Full textBasu, Prasanta Kumar, Bratati Mukhopadhyay, and Rikmantra Basu. Semiconductor Nanophotonics. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198784692.001.0001.
Full textBook chapters on the topic "Dielectric thin layer"
Mandal, Suman, and Dipak K. Goswami. "Flexible Organic Field-Effect Transistors Using Barium Titanate as Temperature-Sensitive Dielectric Layer." In Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 113–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_5.
Full textSingh, Richa, and Shweta Tripathi. "Refractive Index and Dielectric Constant Evaluation of RF Sputtered Few Layer MoS2 Thin Film." In Lecture Notes in Electrical Engineering, 647–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9775-3_59.
Full textAhn, Seung Joon, S. Ahn, and Chul Geun Park. "Investigation on the LPCVD LTO Thin Film as a New Dielectric Layer for the Future ULSI Devices." In The Mechanical Behavior of Materials X, 1549–52. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-440-5.1549.
Full textKapshai, Valery, Anton Shamyna, and Anton Talkachov. "Analysis of the Spatial Distribution of the Second-Harmonic Radiation Generated in a Thin Surface Layer of a Spheroidal Dielectric Particle." In Research and Education: Traditions and Innovations, 361–67. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0379-3_38.
Full textTeranishi, Takashi, Takakiyo Harigai, Hirofumi Kakemoto, Song Min Nam, Satoshi Wada, and Takaaki Tsurumi. "Measurements of Microwave Dielectric Property of Dielectric Thin Layers Using Micro-Sized Planar Electrodes." In Electroceramics in Japan VIII, 121–24. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-982-2.121.
Full textHeyns, M. M., and A. V. Schwerin. "Charge Trapping, Degradation and Wearout of Thin Dielectric Layers During Electrical Stressing." In Crucial Issues in Semiconductor Materials and Processing Technologies, 279–97. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2714-1_28.
Full textVenkatesan, T., S. Bhattacharya, C. Doughty, A. Findikoglu, C. Kwon, Qi Li, S. N. Mao, A. Walkenhorst, and X. X. Xi. "Pulsed Laser Deposited Metal-Oxide Based Superconductor, Semiconductor and Dielectric Heterostructures and Superlattices." In Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices, 209–38. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1727-2_13.
Full textElsayad, Kareem, and Katrin G. Heinze. "Fluorescence Excitation, Decay, and Energy Transfer in the Vicinity of Thin Dielectric/Metal/Dielectric Layers near Their Surface Plasmon Polariton Cutoff Frequency." In Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, 111–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119325161.ch6.
Full textGronenberg, Ole, Georg Haberfehlner, Finn Zahari, Richard Marquardt, Christian Kübel, Gerald Kothleitner, and Lorenz Kienle. "Critical Discussion of Ex situ and In situ TEM Measurements on Memristive Devices." In Springer Series on Bio- and Neurosystems, 129–57. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36705-2_5.
Full textRana, Paramjit, S. K. Mishra, Jaya Mukherjee, and V. S. Rawat. "Multilayer Dielectric Thin Film Optical Coating Design for Single Wavelength Operation of Inherently Dual Wavelength Copper Vapor Laser." In Springer Proceedings in Physics, 849–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_196.
Full textConference papers on the topic "Dielectric thin layer"
Fitio, Volodymyr M., and Yaroslav V. Bobitski. "Transmission peculiarities of dielectric layer/thin metallic film/dielectric layer structure, with or without periodicity in the dielectric layers." In SPIE Proceedings, edited by Igor A. Sukhoivanov, Vasily A. Svich, and Yuriy S. Shmaliy. SPIE, 2008. http://dx.doi.org/10.1117/12.793384.
Full textKrupenko, S. A., and E. L. Ryazanova. "Thin-layer dielectric structure for laser diagnostics of microwave radiation." In Aerospace Sensing, edited by Shi-Kay Yao and Brian M. Hendrickson. SPIE, 1992. http://dx.doi.org/10.1117/12.138382.
Full textMahodaux, C., H. Rigneault, H. Giovannini, and P. Morreti. "Mechanical properties of dielectric thin films." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.tug.1.
Full textKong, Weijin, Maojin Yun, Cuichun Ling, Xin Sun, Jianda Shao, and Zhengxiu Fan. "High diffraction efficiency for multi-layer dielectric gratings with rectangular groove." In Sixth International Conference on Thin Film Physics and Applications. SPIE, 2008. http://dx.doi.org/10.1117/12.792247.
Full textPelikanova, Ivana Beshajova, and Jakub Cinert. "The sputtered dielectric thin film layer and their properties." In 2009 32nd International Spring Seminar on Electronics Technology (ISSE). IEEE, 2009. http://dx.doi.org/10.1109/isse.2009.5207055.
Full textKumar, Arvind, Sandip Mondal, and K. S. R. Koteswara Rao. "Zirconium doped TiO2 thin films: A promising dielectric layer." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946633.
Full textBovard, Bertrand G. "Derivation of a new matrix for an inhomogeneous dielectric thin film." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.mc4.
Full textTemme, Julian, Thorsten Meyers, Julia Reker, Fábio F. Vidor, Joachim Vollbrecht, Heinz Kitzerow, Jan Paradies, and Ulrich Hilleringmann. "Improved organic thin-film transistor performance by dielectric layer patterning." In Fifth Conference on Sensors, MEMS, and Electro-Optic Systems, edited by Monuko du Plessis. SPIE, 2019. http://dx.doi.org/10.1117/12.2500286.
Full textKong, Weijin, Cuichun Ling, Maojin Yun, Xin Sun, Jianda Shao, and Zhengxiu Fan. "Rigorous coupled-wave analysis for the optical character of multi-layer dielectric thin film." In Sixth International Conference on Thin Film Physics and Applications. SPIE, 2008. http://dx.doi.org/10.1117/12.792248.
Full textCampabadal, F., J. M. Rafi, M. B. Gonzalez, M. Zabala, O. Beldarrain, M. C. Acero, and M. Duch. "Thin dielectric films grown by atomic layer deposition: Properties and applications." In 2013 Spanish Conference on Electron Devices (CDE). IEEE, 2013. http://dx.doi.org/10.1109/cde.2013.6481327.
Full textReports on the topic "Dielectric thin layer"
Al-Qadi, Imad, Qingqing Cao, Lama Abufares, Siqi Wang, Uthman Mohamed Ali, and Greg Renshaw. Moisture Content and In-place Density of Cold-Recycling Treatments. Illinois Center for Transportation, May 2022. http://dx.doi.org/10.36501/0197-9191/22-007.
Full text