Academic literature on the topic 'Dielectric breakdown in Mott insulators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dielectric breakdown in Mott insulators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dielectric breakdown in Mott insulators"

1

Eckstein, Martin, and Philipp Werner. "Dielectric breakdown of Mott insulators – doublon production and doublon heating." Journal of Physics: Conference Series 427 (March 27, 2013): 012005. http://dx.doi.org/10.1088/1742-6596/427/1/012005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schilirò, Emanuela, Raffaella Lo Nigro, Fabrizio Roccaforte, and Filippo Giannazzo. "Recent Advances in Seeded and Seed-Layer-Free Atomic Layer Deposition of High-K Dielectrics on Graphene for Electronics." C — Journal of Carbon Research 5, no. 3 (September 2, 2019): 53. http://dx.doi.org/10.3390/c5030053.

Full text
Abstract:
Graphene (Gr) with its distinctive features is the most studied two-dimensional (2D) material for the new generation of high frequency and optoelectronic devices. In this context, the Atomic Layer Deposition (ALD) of ultra-thin high-k insulators on Gr is essential for the implementation of many electronic devices. However, the lack of out-of-plane bonds in the sp2 lattice of Gr typically hinders the direct ALD growth on its surface. To date, several pre-functionalization and/or seed-layer deposition processes have been explored, to promote the ALD nucleation on Gr. The main challenge of these approaches is achieving ultra-thin insulators with nearly ideal dielectric properties (permittivity, breakdown field), while preserving the structural and electronic properties of Gr. This paper will review recent developments of ALD of high k-dielectrics, in particular Al2O3, on Gr with “in-situ” seed-layer approaches. Furthermore, recent reports on seed-layer-free ALD onto epitaxial Gr on SiC and onto Gr grown by chemical vapor deposition (CVD) on metals will be presented, discussing the role played by Gr interaction with the underlying substrates.
APA, Harvard, Vancouver, ISO, and other styles
3

Junge, Paul, Moritz Greinacher, Delf Kober, Patrick Stargardt, and Christian Rupprecht. "Metastable Phase Formation, Microstructure, and Dielectric Properties in Plasma-Sprayed Alumina Ceramic Coatings." Coatings 12, no. 12 (November 29, 2022): 1847. http://dx.doi.org/10.3390/coatings12121847.

Full text
Abstract:
The need for new solutions for electrical insulation is growing due to the increased electrification in numerous industrial sectors, opening the door for innovation. Plasma spraying is a fast and efficient way to deposit various ceramics as electrical insulators, which are used in conditions where polymers are not suitable. Alumina (Al2O3) is among the most employed ceramics in the coating industry since it exhibits good dielectric properties, high hardness, and high melting point, while still being cost-effective. Various parameters (e.g., feedstock type, spray distance, plasma power) significantly influence the resulting coating in terms of microstructure, porosity, and metastable phase formation. Consequently, these parameters need to be investigated to estimate the impact on the dielectric properties of plasma-sprayed alumina coatings. In this work, alumina coatings with different spray distances have been prepared via atmospheric plasma spray (APS) on copper substrates. The microstructure, porosity, and corresponding phase formation have been analyzed with optical microscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Moreover, we present an in-depth analysis of the fundamental dielectric properties e.g., direct current (DC) resistance, breakdown strength, dielectric loss tangent, and permittivity. Our results show that decreasing spray distance reduces the resistivity from 6.31 × 109Ωm (130 mm) to 6.33 × 108Ωm (70 mm), while at the same time enhances the formation of the metastable δ-Al2O3 phase. Furthermore, space charge polarization is determined as the main polarization mechanism at low frequencies.
APA, Harvard, Vancouver, ISO, and other styles
4

Rosch, A. "Breakdown of Luttinger's theorem in two-orbital Mott insulators." European Physical Journal B 59, no. 4 (October 2007): 495–502. http://dx.doi.org/10.1140/epjb/e2007-00312-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Taguchi, Y., T. Matsumoto, and Y. Tokura. "Dielectric breakdown of one-dimensional Mott insulatorsSr2CuO3andSrCuO2." Physical Review B 62, no. 11 (September 15, 2000): 7015–18. http://dx.doi.org/10.1103/physrevb.62.7015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamakawa, H., T. Miyamoto, T. Morimoto, T. Terashige, H. Yada, N. Kida, M. Suda, et al. "Mott transition by an impulsive dielectric breakdown." Nature Materials 16, no. 11 (August 21, 2017): 1100–1105. http://dx.doi.org/10.1038/nmat4967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumagai, Shohei, Hiroaki Iguchi, Masahiro Yamashita, and Shinya Takaishi. "Thermally induced electron–hole dissociation dynamics in quasi-one-dimensional bromo-bridged palladium(iii) Mott-insulator [Pd(en)2Br](Suc-Cn)2·H2O (Cn-Y = dialkylsulfosuccinate; n = 5 and 6)." Physical Chemistry Chemical Physics 24, no. 13 (2022): 7978–82. http://dx.doi.org/10.1039/d2cp00051b.

Full text
Abstract:
Thermally induced electron–hole dissociation was suggested by current–voltage characteristics and dielectric properties in bromo-bridged one-dimensional Mott-insulators, [Pd(en)2Br](Suc-Cn)2·H2O (n = 5 and 6).
APA, Harvard, Vancouver, ISO, and other styles
8

Terasaki, I., T. Takayanagi, M. Kogure, and T. Mizuno. "Out-of-plane dielectric response of the two-dimensional Mott insulators." Physica C: Superconductivity 357-360 (September 2001): 96–98. http://dx.doi.org/10.1016/s0921-4534(01)00174-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abou-Kandil, Ahmed I., Loai Nasrat, and EmanL Fareed. "High temperature vulcanized ethylene propylene diene rubber nanocomposites as high voltage insulators: Dielectric breakdown measurements and evaluation." Polymers and Polymer Composites 30 (January 2022): 096739112211325. http://dx.doi.org/10.1177/09673911221132593.

Full text
Abstract:
The use of porcelain and thermoplastic based materials as High voltage insulators has always been dominant in the industry. Several elastomers were also investigated, mainly Ethylene Propylene Rubber and Silicone rubbers were used as replacement of the traditional Porcelain high Voltage insulators. In this study we experiment with new elastomer, Ethylene propylene diene rubber (EPDM), that is capable of withstanding high voltage as well as being resistant to severe weathering conditions. In addition to having excellent mechanical properties that we discussed elsewhere. Detailed dielectric breakdown measurements were carried out for room temperature vulcanized and high temperature vulcanized samples. The effects of exposure to UV radiation on the dielectric breakdown strength was also studied. Different fillers were used to improve the dielectric breakdown strength of different polymer matrices. Both carbon black based fillers and inorganic fillers were experimented in order to reach optimum mix properties that provide the best dielectric breakdown strength. Resistance to thermal aging and UV radiation was also carried out on EPDM samples.
APA, Harvard, Vancouver, ISO, and other styles
10

Fuertes, V., M. J. Cabrera, J. Seores, D. Muñoz, J. F. Fernández, and E. Enríquez. "Microstructural study of dielectric breakdown in glass-ceramics insulators." Journal of the European Ceramic Society 39, no. 2-3 (February 2019): 376–83. http://dx.doi.org/10.1016/j.jeurceramsoc.2018.08.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Dielectric breakdown in Mott insulators"

1

Mazza, Giacomo. "Non-Equilibrium Phenomena in Strongly Correlated Systems." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4843.

Full text
Abstract:
Correlated systems are a wide class of materials in which the strong electron-electron repulsion is the origin of very fascinating and unusual properties, among which metal-to-insulator transitions and high temperature superconductivity are the most striking examples. In the recent years, the fast development of non-adiabatic probing techniques opened new interesting perspectives for the investigation of such materials in non-equilibrium conditions. In this thesis, we discuss the theoretical description of few relevant cases which represent different examples of non-equilibrium phenomena in correlated materials. In particular, we will focus on the dynamics following a sudden excitation and the coupling to an external driving field. As a first example we consider the dynamics across a phase transition, namely we explore the possibility of driving a phase transition as the result of a sudden excitation, as e.g. the coupling with a short light pulse. We consider systems showing different equilibrium phases and study the conditions under which the off-equilibrium dynamics may lead to non-trivial dynamical phase transitions. A different case is represented by the dynamics induced by a driving electric field. This problem is particularly relevant for the possible applications of correlated materials in electronic devices. Here we consider the paradigmatic case of a correlated material coupled to external sources which impose a finite bias across the system. We analyze the formation and the properties of the non-equilibrium stationary states in which a finite current flows through the system. This allows us to study the non-linear response properties of a correlated system. In this context, a particularly relevant aspect is the problem of the dielectric breakdown of a Mott insulator, namely the formation of conducting states in the Mott insulating phase. In this thesis we explore different mechanisms leading to such possibility. First we discuss a quantum tunneling mechanism of carriers driven across the insulating gap by the effect of strong electric-fields. Eventually, we discuss the possibility of a resistive transition from an insulating to a metallic state induced by the application of an external electric-field.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dielectric breakdown in Mott insulators"

1

Wolters, D. R., J. F. Verwey, and A. T. A. Zegers-Van Duijnhoven. "Chapter 3 Dielectric breakdown in SiO2." In New Insulators, Devices and Radiation Effects, 233–63. Elsevier, 1999. http://dx.doi.org/10.1016/s1874-5903(99)80009-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dielectric breakdown in Mott insulators"

1

Junge, P., C. Rupprecht, M. Greinacher, D. Kober, and P. Stargardt. "Thermally Sprayed Al2O3 Ceramic Coatings for Electrical Insulation Applications." In ITSC2022. DVS Media GmbH, 2022. http://dx.doi.org/10.31399/asm.cp.itsc2022p0072.

Full text
Abstract:
Abstract Thermal spraying enables a fast and effective way to additively deposit various ceramics as electric insulators, which are used in conditions where polymers are not suitable. Alumina (Al2O3) is among the most widely employed materials in the coating industry because it exhibits good dielectric properties, high hardness, and high melting point, while still being cost-effective. Various parameters (e.g., feedstock type, plasma gas mixture, plasma power) significantly influence the resulting coating in terms of microstructure, porosity, crystallinity, and degree of unmolten and molten particles. As a consequence, these parameters need to be investigated to estimate their impact on the electrical insulating properties of thermally sprayed alumina. This study focuses on the development of a novel electric insulation coating from Al2O3 feedstock powders deposited via atmospheric plasma spray (APS). The microstructure, porosity, and corresponding crystallographic phases have been analyzed with optical microscopy, XRD, and SEM images. To achieve an understanding of the parameters influencing the electrical insulation performance of the manufactured coatings, an in-depth analysis of the fundamental dielectric parameters (e.g., DC resistance, breakdown strength, dielectric loss tangent, and permittivity) is presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Andersen, Allen, and JR Dennison. "Pre-breakdown arcing as proxy for DC dielectric breakdown testing of polymeric insulators." In 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP). IEEE, 2015. http://dx.doi.org/10.1109/ceidp.2015.7352084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Apfelbaum, M. S. "The pre-breakdown solutions by electrohydrodynamic equations for liquid insulators." In 2014 IEEE 18th International Conference on Dielectric Liquids (ICDL). IEEE, 2014. http://dx.doi.org/10.1109/icdl.2014.6893083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andersen, Allen, Krysta Moser, and JR Dennison. "Voltage ramp-rate dependence of DC breakdown in polymeric insulators: Physical models versus data." In 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 2016. http://dx.doi.org/10.1109/ceidp.2016.7785465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Braunlich, P. "Non-avalanche dielectric breakdown in wide-band-gap insulators at DC and optical frequencies." In Laser-Induced Damage in Optical Materials 1989. SPIE, 1990. http://dx.doi.org/10.1117/12.2294459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aldan, Manuel P., John P. Verboncoeur, and R. Lawrence Ives. "19.5: Simulation of DC high-voltage breakdown for angled dielectric insulators including space-charge effects." In 2010 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2010. http://dx.doi.org/10.1109/ivelec.2010.5503450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aldan, M. P., J. P. Verboncoeur, and R. L. Ives. "Simulation of DC high-voltage breakdown for angled dielectric insulators including space- and surface-charging effects." In 2010 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2010. http://dx.doi.org/10.1109/ipmhvc.2010.5958295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lima, A. M. N., A. G. S. Barreto Neto, H. Neff, and E. U. K. Melcher. "Refined dielectric breakdown model for crystalline organic insulators: Electro-thermal instability coupled to interband impact ionization." In 2010 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2010. http://dx.doi.org/10.1109/ipmhvc.2010.5958296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aldan, Manuel P., and John P. Verboncoeur. "Simulation of high-voltage DC breakdown for angled dielectric insulators including space-charge and gas-collision effects." In 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6383424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aldan, Manuel Thomas P., and John P. Verboncoeur. "Simulation of high-voltage DC breakdown for angled dielectric insulators including space-charge and gas-collision effects." In 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2012. http://dx.doi.org/10.1109/ipmhvc.2012.6518679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography