Journal articles on the topic 'Diagramms de phases'

To see the other types of publications on this topic, follow the link: Diagramms de phases.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Diagramms de phases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Guizani, Mohamed, Hmida Zamali, and Mohamed Jemal. "Diagramme de phases LiNO3-KNO3." Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 1, no. 12 (December 1998): 787–89. http://dx.doi.org/10.1016/s1251-8069(99)80047-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jéròme, B., and P. Pieranski. "Kossel diagrams of blue phases." Liquid Crystals 5, no. 3 (January 1989): 799–812. http://dx.doi.org/10.1080/02678298908026386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pena, P., B. Vázquez, A. Caballero, and S. De Aza. "Diagramas de equilibrio de fases cuaternarios. Métodos de representación e interpretación." Boletín de la Sociedad Española de Cerámica y Vidrio 44, no. 2 (April 30, 2005): 113–22. http://dx.doi.org/10.3989/cyv.2005.v44.i2.392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Musso, Jean, and Albert Sebaoun. "Diagrammes de phases assistés par ordinateur." Journal de Chimie Physique 86 (1989): 1049–60. http://dx.doi.org/10.1051/jcp/19898601049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Musso, Jean, and Albert Sebaoun. "Diagrammes de phases assistés par ordinateur." Journal de Chimie Physique 86 (1989): 1061–69. http://dx.doi.org/10.1051/jcp/19898601061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ternero Fernández, Fátima. "Determinación de diagramas de fases a partir de las curvas de energía libre-composición." JORNADAS DE FORMACIÓN E INNOVACIÓN DOCENTE DEL PROFESORADO, no. 3 (2020): 2055–78. http://dx.doi.org/10.12795/9788447231003.095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brazhkin, V. V. "Metastable phases and ‘metastable’ phase diagrams." Journal of Physics: Condensed Matter 18, no. 42 (October 5, 2006): 9643–50. http://dx.doi.org/10.1088/0953-8984/18/42/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Blu¨mel, Th, Peter J. Collings, H. Onusseit, and H. Stegemeyer. "Phase diagrams of the blue phases." Chemical Physics Letters 116, no. 6 (May 1985): 529–33. http://dx.doi.org/10.1016/0009-2614(85)85209-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brazhkin, Vadim V. "Metastable phases, phase transformations, and phase diagrams in physics and chemistry." Uspekhi Fizicheskih Nauk 176, no. 7 (2006): 745. http://dx.doi.org/10.3367/ufnr.0176.200607d.0745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pardo, M. P., M. Guittard, A. Chilouet, and A. Tomas. "Diagramme de phases gallium-soufre et études structurales des phases solides." Journal of Solid State Chemistry 102, no. 2 (February 1993): 423–33. http://dx.doi.org/10.1006/jssc.1993.1054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mammadov, F. M., I. R. Amiraslanov, N. N. Efendiyeva, and S. Z. Imamaliyeva. "PHASE DIAGRAMS OF THE FeGa2S4- FeIn2S4 AND FeS- FeGaInS4 SYSTEMS." Chemical Problems 17, no. 1 (2019): 58–65. http://dx.doi.org/10.32737/2221-8688-2019-1-58-65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jivani, A. R. "Phase diagrams of Si1-xGex solid solution: a theoretical approach." Semiconductor Physics Quantum Electronics and Optoelectronics 15, no. 1 (March 29, 2012): 17–20. http://dx.doi.org/10.15407/spqeo15.01.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bahari, Zahra, Jacques Rivet, and Jérôme Dugué. "Diagramme de phases du système Ag2Te-In2Te3." Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 1, no. 7 (July 1998): 411–15. http://dx.doi.org/10.1016/s1387-1609(98)80420-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Touboul, Marcel, Paul Toledano, Corneille Idoura, and Marie-Madeleine Bolze. "Diagramme de phases du système Tl2OMoO3." Journal of Solid State Chemistry 61, no. 3 (March 1986): 354–58. http://dx.doi.org/10.1016/0022-4596(86)90043-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jesser, W. A., G. J. Shiflet, G. L. Allen, and J. L. Crawford. "Equilibrium phase diagrams of isolated nano-phases." Materials Research Innovations 2, no. 4 (January 1999): 211–16. http://dx.doi.org/10.1007/s100190050087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Smirnova, N. L., E. M. Berson, and Yu S. Konyaev. "Interaction of boride phases in phase diagrams." Journal of the Less Common Metals 117, no. 1-2 (March 1986): 395–99. http://dx.doi.org/10.1016/0022-5088(86)90066-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fisher, Michael E. "Phases and phase diagrams - Gibbs' legacy today." Physica A: Statistical Mechanics and its Applications 163, no. 1 (February 1990): 15–16. http://dx.doi.org/10.1016/0378-4371(90)90310-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mammadov, F. M. "PHASE DIAGRAM OF THE FeSe–In2Se3 SYSTEM." Azerbaijan Chemical Journal, no. 3 (October 10, 2019): 62–67. http://dx.doi.org/10.32737/0005-2531-2019-3-62-67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mehdiyeva, I. F. "PHASE DIAGRAM OF THE TlTe–Tl9TmTe6 SYSTEM." Azerbaijan Chemical Journal, no. 1 (April 9, 2021): 18–22. http://dx.doi.org/10.32737/0005-2531-2021-1-18-22.

Full text
Abstract:
Phase equilibria in the TlTe–Tl9TmTe6 system were experimentally studied by methods of differential thermal and powder X-ray diffraction analyses. The system was found to be non-quasibinary due to the incongruent nature of both initial components melting, but it is stable below solidus and is characterized by formation limited solid solutions (2 mol%) based on Tl9TmTe6 are revealed in the system
APA, Harvard, Vancouver, ISO, and other styles
20

Bosholm, O., H. Oppermann, and S. Däbritz. "Chemischer Transport intermetallischer Phasen IV: Das System Fe - Ge/Chemical Vapour Transport of Intermetallic Phases IV: The System Fe - Ge." Zeitschrift für Naturforschung B 56, no. 4-5 (May 1, 2001): 329–36. http://dx.doi.org/10.1515/znb-2001-4-501.

Full text
Abstract:
Abstract Six phases exist in the binary system iron-germanium Fe3Ge, β, η, Fe6Ge5, FeGe and FeGe2. All phases could be prepared by chemical transport with iodine as transport agent in the temperature range between T1 (600 °C) and T2 (950 °C). Two phase diagrams have been known in the literature from specific experiments of chemical vapour transport. It is now possible to decide which phase diagram is the most valid description.
APA, Harvard, Vancouver, ISO, and other styles
21

Wignacourt, JP, M. Drache, P. Confiant, and JC Boivin. "Nouvelles phases du système Bi2O3-BiPO4 I. Description du diagramme de phases." Journal de Chimie Physique 88 (1991): 1933–38. http://dx.doi.org/10.1051/jcp/1991881933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yakymchuk, Chris. "Applying Phase Equilibria Modelling to Metamorphic and Geological Processes: Recent Developments and Future Potential." Geoscience Canada 44, no. 1 (April 20, 2017): 27. http://dx.doi.org/10.12789/geocanj.2017.44.114.

Full text
Abstract:
Phase equilibria modelling has played a key role in enhancing our understanding of metamorphic processes. An important breakthrough in the last three decades has been the ability to construct phase diagrams by integrating internally consistent datasets of the thermodynamic properties of minerals, fluids and melts with activity–composition models for mixed phases that calculate end-member activities from end-member proportions. A major advance in applying phase equilibria modelling to natural rocks is using isochemical phase diagrams to explore the phase assemblages and reaction sequences applicable for a particular sample. The chemical systems used for modelling phase equilibria are continually evolving to provide closer approximations to the natural compositions of rocks and allow wider varieties of compositions to be modelled. Phase diagrams are now routinely applied to metasedimentary rocks, metabasites and intermediate to felsic intrusive rocks and more recently to ultramafic rocks and meteorites. While the principal application of these phase diagrams is quantifying the pressure and temperature evolution of metamorphic rocks, workers are now applying them to other fields across the geosciences. For example, phase equilibria modelling of hydrothermal alteration and the metamorphism of hydrothermally altered rocks can be used to determine ‘alteration vectors’ to hydrothermal mineral deposits. Combining the results of phase equilibria of rock-forming minerals with solubility equations of accessory minerals has provided new insights into the geological significance of U–Pb ages of accessory minerals commonly used in geochronology (e.g. zircon and monazite). Rheological models based on the results of phase equilibria modelling can be used to evaluate how the strength of the crust and mantle can change through metamorphic and metasomatic processes, which has implications for a range of orogenic processes, including the localization of earthquakes. Finally, phase equilibria modelling of fluid generation and consumption during metamorphism can be used to explore links between metamorphism and global geochemical cycles of carbon and sulphur, which may provide new insights into the secular change of the lithosphere, hydrosphere and atmosphere.RÉSUMÉLa modélisation des équilibres de phases a joué un rôle clé dans l’amélioration de notre compréhension des processus métamorphiques. Une percée importante au cours des trois dernières décennies a été la capacité de construire des diagrammes de phase en y intégrant des ensembles de données cohérentes des propriétés thermodynamiques des minéraux, des fluides et des bains magmatiques avec des modèles d'activité-composition pour des phases mixtes qui déduisent l’activité des membres extrêmes à partir des proportions des membres extrêmes. Une avancée majeure dans l'application de la modélisation d'équilibre de phase aux roches naturelles consiste à utiliser des diagrammes de phases isochimiques pour étudier les assemblages de phase et les séquences de réaction applicables pour un échantillon particulier. Les systèmes chimiques utilisés pour la modélisation des équilibres de phase évoluent continuellement pour fournir des approximations plus proches des compositions naturelles des roches et permettent de modéliser de plus grandes variétés de compositions. Les diagrammes de phase sont maintenant appliqués de façon routinière aux roches métasédimentaires, aux métabasites et aux roches intrusives intermédiaires à felsiques et plus récemment aux roches ultramafiques et aux météorites. Bien que l'application principale de ces diagrammes de phase consiste à quantifier l'évolution de la pression et de la température des roches métamorphiques, les utilisateurs les appliquent maintenant à d'autres spécialités des géosciences. Par exemple, la modélisation des équilibres de phase de l'altération hydrothermale et du métamorphisme des roches d’altération hydrothermale peut être utilisée pour déterminer les « vecteurs d'altération » des gisements minéraux hydrothermaux. La combinaison des résultats des équilibres de phase des minéraux constitutifs des roches avec des équations de solubilité des minéraux accessoires a permis d’en savoir davantage sur la signification géologique des âges U–Pb des minéraux accessoires couramment utilisés en géochronologie (par exemple zircon et monazite). Les modèles rhéologiques basés sur les résultats de la modélisation des équilibres de phase peuvent être utilisés pour évaluer comment la résistance de la croûte et du manteau peut changer à travers des processus métamorphiques et métasomatiques, ce qui a des implications sur une gamme de processus orogéniques, y compris la localisation des séismes. Enfin, la modélisation des équilibres de phase de la génération et de l’absorption des fluides pendant le métamorphisme peut être utilisée pour explorer les liens entre le métamorphisme et les cycles géochimiques globaux du carbone et du soufre, ce qui peut fournir de nouvelles perspectives sur le changement séculaire de la lithosphère, de l'hydrosphère et de l'atmosphère.
APA, Harvard, Vancouver, ISO, and other styles
23

Mikołajczak, P., and L. Ratke. "Thermodynamic Assessment of Mushy Zone in Directional Solidification." Archives of Foundry Engineering 15, no. 4 (December 1, 2015): 101–9. http://dx.doi.org/10.1515/afe-2015-0088.

Full text
Abstract:
Abstract Solidification of AlSiFe alloys was studied using a directional solidification facility and the CALPHAD technique was applied to calculate phase diagrams and to predict occurring phases. The specimens solidified by electromagnetic stirring showed segregation across, and the measured chemical compositions were transferred into phase diagrams. The ternary phase diagrams presented different solidification paths caused by segregation in each selected specimen. The property diagrams showed modification in the sequence and precipitation temperature of the phases. It is proposed in the study to use thermodynamic calculations with Thermo-Calc which enables us to visualize the mushy zone in directional solidification. 2D maps based on property diagrams show a mushy zone with a liquid channel in the AlSi7Fe1.0 specimen center, where significant mass fraction (33%) of β-Al5FeSi phases may precipitate before α-Al dendrites form. Otherwise liquid channel occurred almost empty of β in AlSi7Fe0.5 specimen and completely without β in AlSi9Fe0.2. The property diagrams revealed also possible formation of α-Al8Fe2Si phases.
APA, Harvard, Vancouver, ISO, and other styles
24

Bélaïd-Drira, N., H. Zamali, and M. Jemal. "Diagramme de phases du systeme binaire LiNO3-NaNO3." Journal of Thermal Analysis 46, no. 5 (May 1996): 1449–58. http://dx.doi.org/10.1007/bf01979257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gervais, M., A. Douy, B. Dubois, J. P. Coutures, and P. Odier. "Frittage de YBaCuO, implications du diagramme de phases." Revue de Physique Appliquée 24, no. 5 (1989): 495–99. http://dx.doi.org/10.1051/rphysap:01989002405049500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ecrepont, C., M. Guittard, and J. Flahaut. "Systeme La2S3Bi2S3. Phases intermediaires diagramme de phase." Materials Research Bulletin 23, no. 1 (January 1988): 37–42. http://dx.doi.org/10.1016/0025-5408(88)90222-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Faudot, F., M. Harmelin, J. Bigot, S. Argouin, and P. Gouerou. "Le diagramme de phases fer-neodyme (Fe-Nd)." Thermochimica Acta 147, no. 2 (July 1989): 205–15. http://dx.doi.org/10.1016/0040-6031(89)85176-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Imamaliyeva, S. Z., G. I. Alakbarzade, A. N. Mamedov, and M. B. Babanly. "MODELING THE PHASE DIAGRAMS OF THE Tl9SmTe6–Tl4PbTe3 AND Tl9SmTe6–Tl9BiTe6 SYSTEMS." Azerbaijan Chemical Journal, no. 4 (December 12, 2020): 12–16. http://dx.doi.org/10.32737/0005-2531-2020-4-12-16.

Full text
Abstract:
Using the multipurpose genetic algorithm, the analytical models of phase diagrams of the Tl9SmTe6–Tl8Pb2Te6 and Tl9SmTe6–Tl9BiTe6 systems as temperature dependencies of compositions of the equilibrium phases were obtained. The boundaries of the uncertainty band for the liquidus and solidus curves of solid solutions are determined. According to the model of regular solutions of non-molecular compounds, the thermodynamic functions of mixing solid solutions depending on the composition and temperature are determined. It was found that solid solutions based on the Tl9SmTe6, Tl8Pb2Te6 and Tl9BiTe6 compounds are thermodynamically stabile in the whole concentration range
APA, Harvard, Vancouver, ISO, and other styles
29

Oppermann, Heinrich, Uwe Petasch, Peer Schmidt, Egbert Keller, and Volker Krämer. "Zu den Zustandssystemen Bi2Ch3/BiX3 und den ternären Phasen auf diesen Schnitten (Ch= S, Se,Te;X= Cl, Br, I). II: Bismutselenidhalogenide Bi2Se3/BiX3 und Bismuttelluridhalogenide Bi2Te3/BiX3 / On the Pseudobinary Systems Bi2Ch3/BiX3 and the Ternary Phases in these Systems (Ch = S, Se, Te; X = Cl, Br, I). II: Bismutselenidhalides Bi2Se3/BiX3 and Bismuttelluridhalides Bi2Te3/BiX3." Zeitschrift für Naturforschung B 59, no. 7 (July 1, 2004): 727–46. http://dx.doi.org/10.1515/znb-2004-0701.

Full text
Abstract:
In summary, the thermal behaviour of the ternary phases in the pseudo-binary systems Bi2Ch3/BiX3 are described. The thermodynamic data of these phases have been analysed and the appropriate values are given here. The phase diagrams and barograms have been calculated with these data and they are compared with the diagrams that have been obtained experimentally. The crystal structures of the various phases are briefly described.
APA, Harvard, Vancouver, ISO, and other styles
30

Labrador, M., E. Tauler, M. A. Cuevas-Diarte, J. R. Housty, N. B. Chanh, and Y. Haget. "Transitions de phases du pDCB et diagrammes de phases pDCB-pDBB et pDCB-pBCB." Journal of Thermal Analysis 34, no. 2 (March 1988): 537–42. http://dx.doi.org/10.1007/bf01913196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ibrahimova, F. S. "Ag–Sn–Se SYSTEM: PHASE DIAGRAM, THERMODYNAMICS AND MODELING." Azerbaijan Chemical Journal, no. 4 (December 12, 2019): 84–93. http://dx.doi.org/10.32737/0005-2531-2019-4-84-93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Alverdiyev, I. J. "REFINEMENT OF PHASE DIAGRAM IN THE Cu2S-GeS2 SYSTEM." Chemical Problems 17, no. 3 (2019): 423–28. http://dx.doi.org/10.32737/2221-8688-2019-3-423-428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Faizali, Saiyed Zulfiqarali. "Sign-Posting the Phase Diagram of Quantum Chromo Dynamics." Indian Journal of Applied Research 3, no. 2 (October 1, 2011): 293–94. http://dx.doi.org/10.15373/2249555x/feb2013/97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mammadov, F. M. "REFINEMENT OF THE PHASE DIAGRAMS OF THE FeSe–Ga2Se3 AND Ga2Se3–In2Se3 SYSTEMS." Azerbaijan Chemical Journal, no. 3 (2018): 46–49. http://dx.doi.org/10.32737/0005-2531-2018-3-46-49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Will, Thomas M. "Phase Diagrams and their Application to Determine Pressure-Temperature Paths of Metamorphic Rocks." Neues Jahrbuch für Mineralogie - Abhandlungen 174, no. 2 (October 20, 1998): 103–30. http://dx.doi.org/10.1127/njma/174/1998/103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Voronine, G. F. "Une nouvelle approche au calcul des diagrammes de phases." Journal of Thermal Analysis 35, no. 7 (November 1989): 2379–92. http://dx.doi.org/10.1007/bf01911902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Notin, M., L. Bouirden, E. Belbacha, and J. Hertz. "Enthalpies et diagramme de phases du systeme CaPb." Journal of the Less Common Metals 154, no. 1 (October 1989): 121–35. http://dx.doi.org/10.1016/0022-5088(89)90177-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Fedorov, P. P. "Bifurcation of T–x Diagrams of Condensed Binary Systems. Phase Diagrams with Ordered Phases." Russian Journal of Inorganic Chemistry 66, no. 4 (April 2021): 550–57. http://dx.doi.org/10.1134/s0036023621040100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Samoilova, O. V., and L. A. Makrovets. "Thermodynamic Modeling of Phase Equilibria in the FeO-MgO-Al2O3 System." Materials Science Forum 989 (May 2020): 3–9. http://dx.doi.org/10.4028/www.scientific.net/msf.989.3.

Full text
Abstract:
Thermodynamic modeling of coordinates of phase diagrams’ liquidus lines of the FeO–MgO, FeO–Al2O3, MgO–Al2O3 systems and coordinates of phase diagram’s liquidus surface of the FeO–MgO–Al2O3 system has been carried out. In the course of work, a thermodynamic model which describes activity of oxide melt had been selected for each of the systems; energy parameters of the model have been determined. Regions of thermodynamic stability of solid phases which are at equilibrium with the oxide melt have been determined. Results of the modeling have been compared with experimental data existing in the literature. Modeling technique has also allowed evaluating enthalpies and entropies of FeAl2O4 and MgAl2O4 compounds’ formation out of components of the oxide melt. The obtained results are of interest for steelmaking industry processes when determining the melt temperature of a slag containing oxides of iron, magnesium and aluminum.
APA, Harvard, Vancouver, ISO, and other styles
40

Hourlier, Djamila, and Pierre Perrot. "Au-Si and Au-Ge Phases Diagrams for Nanosytems." Materials Science Forum 653 (June 2010): 77–85. http://dx.doi.org/10.4028/www.scientific.net/msf.653.77.

Full text
Abstract:
A thermodynamic study describing relative stability of different systems solid and liquid at equilibrium involved in the growth of semiconductor nanowires is reported. A number of stable and metastable phase diagrams, taking into account the size and the shape of condensed phases are calculated for the two binary systems Au-Si and Au-Ge.
APA, Harvard, Vancouver, ISO, and other styles
41

Onusseit, H., and H. Stegemeyer. "Investigations of phase diagrams with monotropic liquid-crystalline phases." Thermochimica Acta 83, no. 1 (January 1985): 145–52. http://dx.doi.org/10.1016/0040-6031(85)85805-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

MARIOLACOS, KONSTANTINOS. "Schreinemakers diagrams of quinary systems with K+2 phases: A systematic classification." Bulletin of the Geological Society of Greece 34, no. 3 (January 1, 2001): 923. http://dx.doi.org/10.12681/bgsg.17120.

Full text
Abstract:
In the present study, a systematic classification of the Schreinemakers diagrams for quinary systems with K+2 phases is undertaken. The indifferent phases of the respective systems are also considered. In doing so, the same characterization already applied in the Schreinemakers diagrams of quaternary systems is used. In addition, as an application of the above classification, the theoretical treatement of the system KMASH is undertaken.
APA, Harvard, Vancouver, ISO, and other styles
43

Freedman, Simon L., Glen M. Hocky, Shiladitya Banerjee, and Aaron R. Dinner. "Nonequilibrium phase diagrams for actomyosin networks." Soft Matter 14, no. 37 (2018): 7740–47. http://dx.doi.org/10.1039/c8sm00741a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

PANSU, BRIGITTE. "ARE SURFACES PERTINENT FOR DESCRIBING SOME THERMOTROPIC LIQUID CRYSTAL PHASES?" Modern Physics Letters B 13, no. 22n23 (October 10, 1999): 769–82. http://dx.doi.org/10.1142/s0217984999000968.

Full text
Abstract:
Surfaces, like minimal surfaces, are commonly used to describe intricate thermotropic liquid crystalline phase structures: cubic phases, TGB phases, quadratic phases, blue phases, and smectic blue phases. Such geometrical models are good tools to visualize the competition between the various molecular interactions generating these phases although they often cannot lead to the prediction of the thermodynamic phase diagrams.
APA, Harvard, Vancouver, ISO, and other styles
45

De Aza, A. H., P. Pena, A. Caballero, and S. De Aza. "Los diagramas de equilibrio de fases como una herramienta para el diseño y comprensión del comportamiento en servicio de los materiales refractarios." Boletín de la Sociedad Española de Cerámica y Vidrio 50, no. 6 (December 13, 2011): 279–90. http://dx.doi.org/10.3989/cyv.372011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Samatov, Nematjon Akhmatovich. "Selection Of Flow Diagrams Of The Adjustable Thyristor Asynchronous Electric Actuator With Phase Control." American Journal of Engineering And Techonology 02, no. 11 (November 20, 2020): 19–24. http://dx.doi.org/10.37547/tajet/volume02issue11-03.

Full text
Abstract:
This article discusses the use of thyristors and the choice of a circuit in the control of adjustable asynchronous electric motors. The theoretical foundations and practical aspects of using various control schemes for asynchronous electric drives are presented.
APA, Harvard, Vancouver, ISO, and other styles
47

Sharma, Hom, Vinit Sharma, and Tran Doan Huan. "Exploring PtSO4 and PdSO4 phases: an evolutionary algorithm based investigation." Physical Chemistry Chemical Physics 17, no. 27 (2015): 18146–51. http://dx.doi.org/10.1039/c5cp02658j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ismailova, E. N., I. B. Bakhtiyarly, and M. B. Babanly. "REFINEMENT OF THE PHASE DIAGRAM OF THE SnSe - Sb2Se3 SYSTEM." Chemical Problems 18, no. 2 (2020): 250–56. http://dx.doi.org/10.32737/2221-8688-2020-2-250-256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Imamaliyeva, S. Z., G. I. Alakbarzade, A. N. Mamedov, and M. B. Babanly. "MODELING THE PHASE DIAGRAM OF THE Tl9TbTe6–Tl4PbTe3–Tl9BiTe6 SYSTEM." Azerbaijan Chemical Journal, no. 2 (June 29, 2021): 6–12. http://dx.doi.org/10.32737/0005-2531-2021-2-6-12.

Full text
Abstract:
The analytical multi 3D model of phase diagram of the Tl9TbTe6–Tl8Pb2Te6–Tl9BiTe6 system was obtained as temperature dependence on the composition using the Multipurpose Genetic Algorithm (MGA). It was determined that the system is characterized by the formation of continuous solid solutions with tetragonal Tl5Te3-type structure (δ-phase). The boundaries of the uncertainty band for the liquidus and solidus surfaces of the δ-phase and the TlTbTe2 compound are determined. The thermodynamic functions of mixing of the solid solutions depending on the composition and temperature are determined based on the model of regular solutions of non-molecular compounds. It was established that the δ-phase possess thermodynamic stability in the entire concentration interval
APA, Harvard, Vancouver, ISO, and other styles
50

Mammadov, F. M. "REFINEMENT OF THE PHASE DIAGRAM OF THE MnTe–In2Te3 SYSTEM." Azerbaijan Chemical Journal, no. 2 (June 29, 2021): 37–41. http://dx.doi.org/10.32737/0005-2531-2021-2-37-41.

Full text
Abstract:
The MnTe–In2Te3 system was re-investigated by DTA and XRD methods, and its phase diagram was constructed somewhat differently from the previously known ones. It was found that the system is characterized by the formation of the MnIn2Te4 compound congruently melting at 1025 K with a wide (49–67 mol% In2Te3) homogeneity region. This phase is in eutectic equilibrium (1015 K) with solid solutions based on lt-MnTe (lt – low temperature) and in peritectic equilibrium with solid solutions based on In2Te3. A comparative analysis of the results obtained with the literature data is carried out
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography