Contents
Academic literature on the topic 'Diagramme de phases de l'or'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diagramme de phases de l'or.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Diagramme de phases de l'or"
Guizani, Mohamed, Hmida Zamali, and Mohamed Jemal. "Diagramme de phases LiNO3-KNO3." Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 1, no. 12 (December 1998): 787–89. http://dx.doi.org/10.1016/s1251-8069(99)80047-4.
Full textBahari, Zahra, Jacques Rivet, and Jérôme Dugué. "Diagramme de phases du système Ag2Te-In2Te3." Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 1, no. 7 (July 1998): 411–15. http://dx.doi.org/10.1016/s1387-1609(98)80420-9.
Full textTouboul, Marcel, Paul Toledano, Corneille Idoura, and Marie-Madeleine Bolze. "Diagramme de phases du système Tl2OMoO3." Journal of Solid State Chemistry 61, no. 3 (March 1986): 354–58. http://dx.doi.org/10.1016/0022-4596(86)90043-5.
Full textGaultier, J. P. "Etude de la repartition des cations interfoliaires dans les phlogopites alterees-(Na, Ca) et (Na, K)." Clay Minerals 20, no. 1 (March 1985): 1–14. http://dx.doi.org/10.1180/claymin.1985.020.1.01.
Full textPardo, M. P., M. Guittard, A. Chilouet, and A. Tomas. "Diagramme de phases gallium-soufre et études structurales des phases solides." Journal of Solid State Chemistry 102, no. 2 (February 1993): 423–33. http://dx.doi.org/10.1006/jssc.1993.1054.
Full textGervais, M., A. Douy, B. Dubois, J. P. Coutures, and P. Odier. "Frittage de YBaCuO, implications du diagramme de phases." Revue de Physique Appliquée 24, no. 5 (1989): 495–99. http://dx.doi.org/10.1051/rphysap:01989002405049500.
Full textEcrepont, C., M. Guittard, and J. Flahaut. "Systeme La2S3Bi2S3. Phases intermediaires diagramme de phase." Materials Research Bulletin 23, no. 1 (January 1988): 37–42. http://dx.doi.org/10.1016/0025-5408(88)90222-x.
Full textFaudot, F., M. Harmelin, J. Bigot, S. Argouin, and P. Gouerou. "Le diagramme de phases fer-neodyme (Fe-Nd)." Thermochimica Acta 147, no. 2 (July 1989): 205–15. http://dx.doi.org/10.1016/0040-6031(89)85176-7.
Full textBélaïd-Drira, N., H. Zamali, and M. Jemal. "Diagramme de phases du systeme binaire LiNO3-NaNO3." Journal of Thermal Analysis 46, no. 5 (May 1996): 1449–58. http://dx.doi.org/10.1007/bf01979257.
Full textWignacourt, JP, M. Drache, P. Confiant, and JC Boivin. "Nouvelles phases du système Bi2O3-BiPO4 I. Description du diagramme de phases." Journal de Chimie Physique 88 (1991): 1933–38. http://dx.doi.org/10.1051/jcp/1991881933.
Full textDissertations / Theses on the topic "Diagramme de phases de l'or"
Richard, Pauline. "Exploration ab initio du diagramme de phases de l'or à haute pression et haute température." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF040.
Full textThis thesis is dedicated to exploring the phase diagram of gold under high pressure and high temperature. Calculating the free energy is fundamental for comparing the relative stability of phases under specific thermodynamic conditions. However, this quantity explicitly depends on the partition function, making it challenging to calculate in atomistic simulations. It is often decomposed into cold and thermal contributions. Among these contributions, the lattice dynamics, or phonons, play a crucial role. The temperatures explored induce indeed anharmonic effects, necessitating the use of expensive ab initio methods, based on density functional theory (DFT) which are the most appropriate method to account for these effects that existing empirical potentials cannot reproduce. Coupled with thermodynamic integration, it is the reference method for calculating free energy. However, this method remains very time-consuming and is thus prohibitive to explore the whole phase diagram of gold. Alternative methods exist, such as the quasi-harmonic approximation, but its validity at high temperature is difficult to assess. The goal of this thesis is to propose a method that maintains DFT accuracy while reducing computation time. To achieve this, an accelerated sampling procedure using machine learning is employed. This procedure allows for the training of surrogate potentials, which are then used a posteriori to extract the Gibbs free energies of the considered structures via a non-equilibrium thermodynamic integration calculation. The results obtained have been validated by comparison with those from the temperature-dependent effective potential. In the first part, this approach was applied to construct the phase diagram of solid gold from 0 to 1 TPa and up to 10,000 K. It shows the stabilization of a body-centered cubic (bcc) phase at high temperatures, around 200 GPa. An explanation for the cubic face-centered (fcc)-bcc transition before melting was proposed, based on the effects of interatomic force constants. Furthermore, the stability domains of the fcc and hexagonal close-packed (hcp) phases predicted by this study are in good agreement with most recent experimental results. In the second part, this procedure was extended to calculate the melting curve of gold
Sprosser, Joachim. "Transitions de phases structurales de la surface (110) de l'or." Le Mans, 1992. http://www.theses.fr/1992LEMA1013.
Full textTABARY, PATRICK. "Etude du diagramme de phases al#2o#3-aln." Paris 11, 1997. http://www.theses.fr/1997PA112219.
Full textTrinité-Quequet, Virginie. "Etude théorique des phases du titane." Palaiseau, Ecole polytechnique, 2006. http://www.theses.fr/2006EPXX0034.
Full textVICTOR, JEAN-MARC. "Diagramme de phases et facteurs de structure de macromolecules chargees." Paris 6, 1988. http://www.theses.fr/1988PA066585.
Full textMorhard, Klaus-Dieter. "Diagramme de phases de l'³He adsorbé sur le graphite." Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10008.
Full textKfouri, Charbel el. "Système Ag-As-Te diagramme de phases et matériaux vitreux /." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37614640f.
Full textVictor, Jean-Marc. "Diagramme de phases et facteurs de structure de macromolécules chargées." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37619439w.
Full textAdjadj-Bouharkat, Fouzia. "Le diagramme d'équilibre entre phases du système ternaire Bi-Sb-Zn." Lyon 1, 1995. http://www.theses.fr/1995LYO10011.
Full textLudl, Adriaan-Alexander. "Etude du diagramme de phases des solutions d'électrolytes sous conditions extrêmes." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066303/document.
Full textThe study of amorphous and crystalline phases of solutions gives essential insight on the behaviour of water under conditions relevant for biology and planetary science. The aim of this work is the exploration of the phase diagram of common electrolyte solutions (LiCl-water, NaCl-water) under pressure and temperature conditions (from 77 K to 330 K and up to 5 GPa) relevant for icy bodies such as Europe and Ganymede. In experiments and simulations we search for crystalline phases of ice at high-pressure, which can contain considerable amounts of salt in their lattice (up to 10 % of by weight). We probe the existence of these salty ices, and characterize two exotic, pressure induced properties, polyamorphism and ionic inclusions in the ice lattice. We have produced highly concentrated amorphous solutions of NaCl in water by fast quenching to liquid nitrogen temperature. Our neutron and X-ray diffraction experiments show that the local structure of this amorphous solution at ambient pressure is very similar to the high density amorphous structure of pure water. Our high-pressure experiments with the Paris-Edinburgh cell and our classical Molecular Dynamics calculations show only smooth structure and density changes during compression up to 4 GPa. We discuss the possibility of salt (NaCl) inclusions in the ice VII lattice at high pressure in our experiments by complementary calculations based on Density Functional Theory. The ice VII which crystallized in our experiments is either pure ice, or it contains only a small fraction of the ions from the solution. It may be possible that ions can be included in larger quantities at higher pressures