Dissertations / Theses on the topic 'Diagram algebra'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 48 dissertations / theses for your research on the topic 'Diagram algebra.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ahmed, Chwas Abas. "Representation theory of diagram algebras : subalgebras and generalisations of the partition algebra." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/15997/.
Full textWilcox, Stewart. "Cellularity of Twisted Semigroup Algebras of Regular Semigroups." Thesis, The University of Sydney, 2005. http://hdl.handle.net/2123/720.
Full textCorwin, Stephen P. "Representation theory of the diagram An over the ring k[[x]]." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/50001.
Full textPh. D.
incomplete_metadata
Wilcox, Stewart. "Cellularity of Twisted Semigroup Algebras of Regular Semigroups." University of Sydney. Mathematics and Statistics, 2006. http://hdl.handle.net/2123/720.
Full textAguirre, Diana. "PROGENITORS, SYMMETRIC PRESENTATIONS AND CONSTRUCTIONS." CSUSB ScholarWorks, 2018. https://scholarworks.lib.csusb.edu/etd/624.
Full textMichael, Ifeanyi Friday. "On a unified categorical setting for homological diagram lemmas." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18085.
Full textENGLISH ABSTRACT: Some of the diagram lemmas of Homological Algebra, classically known for abelian categories, are not characteristic of the abelian context; this naturally leads to investigations of those non-abelian categories in which these diagram lemmas may hold. In this Thesis we attempt to bring together two different directions of such investigations; in particular, we unify the five lemma from the context of homological categories due to F. Borceux and D. Bourn, and the five lemma from the context of modular semi-exact categories in the sense of M. Grandis.
AFRIKAANSE OPSOMMING: Verskeie diagram lemmata van Homologiese Algebra is aanvanklik ontwikkel in die konteks van abelse kategorieë, maar geld meer algemeen as dit behoorlik geformuleer word. Dit lei op ’n natuurlike wyse na ’n ondersoek van ander kategorieë waar hierdie lemmas ook geld. In hierdie tesis bring ons twee moontlike rigtings van ondersoek saam. Dit maak dit vir ons moontlik om die vyf-lemma in die konteks van homologiese kategoieë, deur F. Borceux en D. Bourn, en vyflemma in die konteks van semi-eksakte kategorieë, in die sin van M. Grandis, te verenig.
Antrobus, Jared E. "The State of Lexicodes and Ferrers Diagram Rank-Metric Codes." UKnowledge, 2019. https://uknowledge.uky.edu/math_etds/66.
Full textBowman, Christopher David. "Algebraic groups, diagram algebras, and their Schur-Weyl dualities." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610216.
Full textImaev, Aleksey A. "Hierarchical Modeling of Manufacturing Systems Using Max-Plus Algebra." Ohio University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1257871858.
Full textKing, Oliver. "The representation theory of diagram algebras." Thesis, City University London, 2014. http://openaccess.city.ac.uk/5915/.
Full textShand, Duncan. "Proof diagrams and term rewriting with applications to computational algebra." Thesis, University of St Andrews, 1997. http://hdl.handle.net/10023/13498.
Full textPaul, Inga [Verfasser], and Steffen [Akademischer Betreuer] König. "Structure theory for cellularly stratified diagram algebras / Inga Paul. Betreuer: Steffen König." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://d-nb.info/1068810904/34.
Full textWilson, Wilf A. "Computational techniques in finite semigroup theory." Thesis, University of St Andrews, 2019. http://hdl.handle.net/10023/16521.
Full textFelisberto, Valente Gustavo. "The Eulerian Bratteli Diagram and Traces on Its Associated Dimension Group." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40608.
Full textDidt, Daniel. "Linkable Dynkin diagrams and quasi-isomorphisms for finite dimensional pointed Hopf algebras." [S.l.] : [s.n.], 2002. http://edoc.ub.uni-muenchen.de/archive/00000785.
Full textSouto, Gonçalves De Abreu Samuel François. "Cuts, discontinuities and the coproduct of Feynman diagrams." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14173.
Full textDidt, Daniel. "Linkable Dynkin diagrams and Quasi-isomorphisms for finite dimensional pointed Hopf algebras." Diss., lmu, 2003. http://nbn-resolving.de/urn:nbn:de:bvb:19-7854.
Full textSANTACATTERINA, MARTIN PABLO. "CLASSIFICATION OF REAL SEMI-SIMPLE LIE ALGEBRAS BY MEANS OF SATAKE DIAGRAMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=32456@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
PROGRAMA DE EXCELENCIA ACADEMICA
Iniciamos o trabalho com uma revisão da classificação de álgebras de Lie semi-simples sobre corposo algebraicamente fechados de caracteristica zero a traves dos Diagramas de Dyinkin. Posteriormente estudamos sigma - sistemas normais e classificamos eles a traves de diagramas de Satake. Finalmente estudamos a estrutura das formas reais de álgebras de Lie semi-simples complexas, explicitando a conexão com os diagramas de Satake e fornecenendo assim uma classificação das mesmas.
We begin the work with a review of the classification of semisimple Lie algebras over an algebraically field of characteristic zero through the Dyinkin Diagrams. Subsequently we study sigma - normal systems and classify them through Satake diagrams. Finally we study the structure of the real forms of complex semi-simple Lie algebras, explaining the connection with the Satake diagrams and thus providing a classification of them.
Hamdi, Adel. "Combinatoire des opérateurs non-commutatifs et polynômes orthogonaux." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10142.
Full textThis thesis is divided into two parts, the first deals with the combinatorics associated to the normal ordering form of noncommutative operators and the second addresses the symmetric distributions of the crossing numbers and nesting numbers, respectively k-crossings and k-nestings, in combinatorial structures (partitions, permutations, colored permutations, …). The first part studies the normal order of operators in terms of rook placements. We study the normal ordering form connecting two noncommutative operators D and U, and some special orthogonal polynomials, and establish bijonctions between coefficients of (D+U)n and rook placements in Ferrers diagrams. We also give combinatorial proofs and alternatives to some quantum conjectures posed by physicists. In the second part, we define the notions of statistics, nestings and k-nestings, on the sets of permutations of the Coxeter group of type B. We also give extensions to type B of the results of the crossings and nestings, respectivelu k-crossings and K-nestings in the set of permutations of type A, in terms of symmetric distributions. Likewise, we study the link between non-commutative operators and these statistics. Other extensions of the distribution of these statistics on the sets of colored partitions and colored permutations of type A and B are established
Adamou, Ibrahim. "Curvas y Superficies Bisectrices y Diagrama de Voronoi de una familia finita de semirrectas paralelas en R3." Doctoral thesis, Universidad de Cantabria, 2013. http://hdl.handle.net/10803/123824.
Full textEste trabajo consta de tres partes principales : el calculo de las bisectrices de dos curvas o de un punto y una curva en el plano, de la superficie bisectriz de dos superficies en R3, y del diagrama de Voronoi de una familia finita de semirrectas paralelas y con la misma orientación en R3. Estos temas están estrechamente relacionados y tienen aplicaciones en CAD/CAGD y en Geometría Computacional. Se presenta un nuevo método para determinar, utilizando la regla de Cramer generalizada y métodos de eliminación adecuados, una parametrización algebraica exacta (racional o no racional) de la curva bisectriz de dos curvas planas racionales dadas. Este método se generaliza para determinar una parametrización algebraica exacta de la superficie bisectriz de dos superficies racionales de grado bajo. El método se aplica, en particular, para obtener parametrizaciones de la bisectriz de dos curvas planas racionales, cuando una de ellas es una circunferencia o una recta. Por otro lado, se muestra cómo obtener fácilmente una parametrizacin de la bisectriz de los siguientes pares de superficies : plano y cuádrica, plano y toro, cilindro circular y cuádrica no desarrollable, cilindro circular y toro, dos cilindros, cilindro y cono, y dos conos. Estas parametrizaciones son racionales en la mayora de los casos. En los casos restantes, la parametrización contiene una raíz cuadrada, que resulta adecuada para determinar una buena aproximación de la bisectriz. Además, se presenta un enfoque diferente para el problema de la curva bisectriz plana. Este nuevo método utiliza color dinámico en GeoGebra para el cálculo de una caracterización geométrica y numérica de la bisectriz de dos objetos geométricos en el plano (dos curvas, o una curva y un punto). Aunque no proporciona una representación algebraica, el método permite el cálculo de una representación aproximada de la curva bisectriz. El diagrama de Voronoi (DV) es una estructura de datos fundamental en geometría computacional con diversas aplicaciones en distintas áreas teóricas y prácticas. Se estudia el DV de un conjunto de semirrectas paralelas y con la misma orientación, restringidas a un dominio compacto D0 ⊂ R3, con respecto a la distancia euclidiana. Este nuevo tipo de DV se puede utilizar para proporcionar una solución eficiente a algunos problemas relacionados con la perforación, en industrias tales como la hidráulica o la minería. Se presenta un algoritmo eficiente para calcular una aproximación de un DV de esa clase, utilizando un proceso de subdivisión, que produce una malla que representa correctamente la topología del DV.
This thesis has three main parts: computation of the bisectors of two curves or a point and a curve in the plane, of the bisector of two surfaces in R3, and of the Voronoi diagram of a finite family of parallel half lines in R3, with the same orientation. These subjects are closely related, and have applications in CAD/CAGD and Computational Geometry. In each of the three parts, we present algorithmic methods for computing certain representations of the geometric object of interest: the bisector curve, the bisector surface, or the Voronoi diagram. We present a new approach to determine, using the generalized Cramer’s rule and suitable elimination steps, an exact algebraic parameterization (rational or non rational) of the bisector curve of two given planar rational curves. The approach is, then, generalized to determine an exact algebraic parameterization of the bisector surface of two low degree rational surfaces. In particular, we apply the method to obtain parametrizations of the bisector of two rational plane curves, when one of them is a circle or a straight line. On the other hand, we show how to easily obtain parametrizations of the bisector of the following pairs of surfaces: planequadric, plane-torus, circular cylinder-non developable quadric, circular cylindertorus, cylinder-cylinder, cylinder-cone and cone-cone. These parametrizations are rational in most cases. In the remaining cases the parametrization involves one square root which is well-suited to determine a good approximation of the bisector. In addition, a different approach for the bisector curve problem will be presented. This new method uses dynamic color in GeoGebra for the computation of a geometric and numerical characterization of the bisector of two planar geometric objects (two curves, or a curve and a point). Even if it does not provide an algebraic representation, the method could lead to the computation of an approximate representation of the bisector curve. The Voronoï diagram (VD) is a fundamental data structure in computational geometry with various applications in theoretical and practical areas. We consider the VD of a set of parallel half-lines, with the same orientation, constrained to a compact domain D0 ⊂ R3, with respect to the Euclidean distance. This new kind of VD can be used to provide an efficient solution to some problems in the drilling industry, such as hydraulic or mining. We present an efficient approximate algorithm for computing such VD, using a box subdivision process, which produces a mesh representing the topology of the VD in D0.
Oliveira, Leonardo Gomes. "Álgebras de Lie semi-simples." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052009-113224/.
Full textThe dissertation has the theme Lie algebras. Specifically semi-simple Lie algebras and its properties. To find these properties we studied the basic concepts of the theory of Lie algebras and their representations. Then we did the classification by Dynkin diagrams of these algebras and explaining the possible diagrams that are associated with a semi-simple Lie algebra. Finally, we demonstrate several results related to this classification, among these, the main result demonstrated was: the Dynkin diagrams are a complete invariant of semi-simple Lie algebras
FRANÇA, Antonio Marcos Duarte. "Expoentes de PI-Álgebras associativas." Universidade Federal de Campina Grande, 2014. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1398.
Full textMade available in DSpace on 2018-08-09T18:04:07Z (GMT). No. of bitstreams: 1 ANTONIO MARCOS DUARTE DE FRANÇA - DISSERTAÇÃO 2014..pdf: 1066992 bytes, checksum: 6e270db1611e61d65507f5f99e9bd161 (MD5) Previous issue date: 2014-10
Capes
Para ler o resumo deste trabalho recomendamos o download do arquivo, uma vez que o mesmo possui fórmulas e caracteres matemáticos que não foram possíveis trascreve-los aqui.
To read the summary of this work we recommend downloading the file, since it has formulas and mathematical characters that were not possible to transcribe them here.
Hadzihasanovic, Amar. "The algebra of entanglement and the geometry of composition." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:711fc159-cd6a-42c3-a4b6-7ed7f594f781.
Full textGüntürkün, Sema. "HOMOGENEOUS GORENSTEIN IDEALS AND BOIJ SÖDERBERG DECOMPOSITIONS." UKnowledge, 2014. http://uknowledge.uky.edu/math_etds/15.
Full textLeyva, Daviel. "The Systems of Post and Post Algebras: A Demonstration of an Obvious Fact." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7844.
Full textPalmieri, Riccardo. "Real forms of Lie algebras and Lie superalgebras." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9448/.
Full textAltmann, Kristina. "Centralisers of fundamental subgroups." Phd thesis, kostenfrei, 2007. http://elib.tu-darmstadt.de/diss/000875.
Full textVignoli, Massimiliano. "Sistemi di radici." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5926/.
Full textBilli, Simone. "Quiver e loro rappresentazioni: il Teorema di Gabriel." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16432/.
Full textMammez, Cécile. "Deux exemples d'algèbres de Hopf d'extraction-contraction : mots tassés et diagrammes de dissection." Thesis, Littoral, 2017. http://www.theses.fr/2017DUNK0459/document.
Full textThis thesis deals with the study of combinatorics of two Hopf algebras. The first one is the packed words Hopf algebra WMAT introduced by Duchamp, Hoang-Nghia, and Tanasa who wanted to build a coalgebra model for packed words by using a selection-quotient process. We describe certain sub-objects or quotient objects as well as maps to other Hopf algebras. We consider first a Hopf algebra of permutations. Its graded dual has a block deconcatenation coproduct and double shuffle product. The double shuffle product is commutative so the Hopf algebra is different from the Malvenuto and Reutenauer one. We analyze then the Hopf algebra generated by packed words looking like x₁...x₁. This Hopf algebra and non commutative symmetric functions are isomorphic. So its graded dual and quasi-symmetric functions are isomorphic too. Finally we consider a Hopf algebra of compositions an give its interpretation in terms of a semi-direct coproduct structure. The second objet we study is the Hopf algebra of dissection diagrams HD introduced by Dupont in number theory. We study the cofreedom problem. We can't conclude with homogeneous primitive elements of degree 3. With the degree 5 case, we can say that is not cofree with the parameter -1. We study the pre-Lie algebra structure of HD's graded dual too. We consider in particular the sup-pre-Lie algebra generated by the dissection diagram of degree 1. It is not a free pre-Lie algebra
López, Neumann Daniel. "Kuperberg invariants for sutured 3-manifolds." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7036.
Full textIn this thesis, we study Kuperberg's Hopf algebra approach to quantum invariants of closed 3-manifolds. We show that, for involutive Hopf superalgebras, Kuperberg invariants extend to the more general class of balanced sutured 3-manifolds, and in particular, to link complements. To achieve this, we bring many aspects of Reidemeister torsion theory into the realm of quantum invar-iants, such as twisting, Fox calculus and Spin^c structures and we make clear to which aspects of Hopf algebra theory these correspond. When our construction is specialized to an exterior algebra, we show that it recovers the twisted Reidemeister torsion of sutured 3-manifolds
Poulain, d. andecy Loic. "Algèbres de Hecke cyclotomiques : représentations, fusion et limite classique." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4036/document.
Full textAn inductive approach to the representation theory of the chain of the cyclotomic Hecke algebras of type G(m,1,n) is developed. This approach relies on the study of the spectrum of a maximal commutative family formed by the analogues of the Jucys--Murphy elements.The irreducible representations, labelled by the multi-partitions, are constructed with the help of a new associative algebra, whose underlying vector space is the tensor product of the cyclotomic Hecke algebra with the free associative algebra generated by the standard multi-tableaux.The analogue of this approach is presented for the classical limit, that is for the chain of complex reflection groups of type G(m,1,n).In a second part, a basis of the cyclotomic Hecke algebras is given and the flatness of the deformation is proved without using the representation theory. These results are extended to the affine Hecke algebras of type A.Then a fusion procedure is presented for the complex reflection groups and the cyclotomic Hecke algebras of type G(m,1,n). In both cases, a complete set of primitive orthogonal idempotents is obtained by successive evaluations of a rational fonction.In a third part, a new presentation is obtained for the alternating subgroups of all Coxeter groups. The generators are related to oriented edges of the Coxeter graph. This presentation is then extended, for all types, to the spinor extensions of the alternating groups, the alternating Hecke algebras and the alternating subgroups of braid groups
Gilliers, Nicolas. "Non-commutative gauge symmetry and pseudo-unitary diffusions." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS113.
Full textThis thesis is devoted to the study of two quite different questions, which are related by the tools that we use to study them. The first question is that of the definition of lattice gauge theories with a non-commutative structure group. Here, by non-commutative, we do not mean non-Abelian, but instead non-commutative in the general sense of non-commutative geometry. The second question is that of the behaviour of Brownian diffusions on non-compact matrix groups of a specific kind, namely groups of pseudo-orthogonal, pseudo-unitary or pseudo-symplectic matrices. In the first chapter, we investigate lattice and continuous quantum gauge theories on the Euclidean plane with a structure group that is replaced by a Zhang algebra. Zhang algebras are non-commutative analogues of groups and contain the class of Voiculescu’s dual groups. We are interested in non-commutative analogues of random gauge fields, which we describe through the random holonomy that they induce. We propose a general definition of a holonomy field with Zhang gauge symmetry, and construct such a field starting from a quantum Lévy process on a Zhang algebra. As an application, we define higher dimensional generalizations of the so-called master field. In the second chapter, we study matricial approximations of higher dimensional master fields constructed in the previous chapter. These approximations (in non-commutative distribution) are obtained by extracting blocks of a Brownian unitary diffusion (with entries in the algebras of real, complex or quaternionic numbers) and letting the dimension of these blocks tend to infinity. We divide our study into two parts: in the first one, we extract square blocks while in the second one we allow rectangular blocks. In both cases, free probability theory appears as the natural framework in which the limiting distributions are most accurately described. In the last two chapters, we use tools introduced (Zhang algebras and coloured Brauer diagrams) in the first two ones to study Brownian motion on pseudo-unitary matrices in high dimensions. We prove convergence in non-commutative distribution of the pseudo-unitary Brownian motions we consider to free with amalgamation semi-groups under the hypothesis of convergence of the normalized signature of the metric. In the split case, meaning that at least asymptotically the metric has as much negative directions as positive ones, the limiting distribution is that of a free Lévy process, which is a solution of a free stochastic differential equation. We leave open the question of such a realization of the limiting distribution in the general case. In addition we provide (intriguing) numerical evidences for the convergence of the spectral distribution of such random matrices and make two conjectures. At the end of the thesis, we prove asymptotic normality for the fluctuations
Lewis, Elizabeth Faith. "Peter Guthrie Tait : new insights into aspects of his life and work : and associated topics in the history of mathematics." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/6330.
Full textGeri, Adam. "Dynkinovy diagramy komplexních polojednoduchých Lieových algeber." Master's thesis, 2015. http://www.nusl.cz/ntk/nusl-331705.
Full text"On efficient ordered binary decision diagram minimization heuristics based on two-level logic." 1999. http://library.cuhk.edu.hk/record=b5889831.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references (leaves 69-71).
Abstract also in Chinese.
Chapter 1 --- Introduction --- p.3
Chapter 2 --- Definitions --- p.7
Chapter 3 --- Some Previous Work on OBDD --- p.13
Chapter 3.1 --- The Work of Bryant --- p.13
Chapter 3.2 --- Some Variations of the OBDD --- p.14
Chapter 3.3 --- Previous Work on Variable Ordering of OBDD --- p.16
Chapter 3.3.1 --- The FIH Heuristic --- p.16
Chapter 3.3.2 --- The Dynamic Variable Ordering --- p.17
Chapter 3.3.3 --- The Interleaving method --- p.19
Chapter 4 --- Two Level Logic Function and OBDD --- p.21
Chapter 5 --- DSCF Algorithm --- p.25
Chapter 6 --- Thin Boolean Function --- p.33
Chapter 6.1 --- The Structure and Properties of thin Boolean functions --- p.33
Chapter 6.1.1 --- The construction of Thin OBDDs --- p.33
Chapter 6.1.2 --- Properties of Thin Boolean Functions --- p.38
Chapter 6.1.3 --- Thin Factored Functions --- p.49
Chapter 6.2 --- The Revised DSCF Algorithm --- p.52
Chapter 6.3 --- Experimental Results --- p.54
Chapter 7 --- A Pattern Merging Algorithm --- p.59
Chapter 7.1 --- Merging of Patterns --- p.60
Chapter 7.2 --- The Algorithm --- p.62
Chapter 7.3 --- Experiments and Conclusion --- p.65
Chapter 8 --- Conclusions --- p.67
SIMON, MARTIN A. "AN EXTERNAL CONTROL STUDY OF DIAGRAM DRAWING SKILLS FOR THE SOLUTION OF ALGEBRA WORD PROBLEMS BY NOVICE PROBLEM-SOLVERS (FIGURES, HEURISTICS, SPATIAL REPRESENTATIONS, METACOGNITION)." 1986. https://scholarworks.umass.edu/dissertations/AAI8701220.
Full textLeung, Louis. "Classical Lie Algebra Weight Systems of Arrow Diagrams." Thesis, 2010. http://hdl.handle.net/1807/26366.
Full textAnton, François. "Voronoi diagrams of semi-algebraic sets." Phd thesis, 2003. http://tel.archives-ouvertes.fr/tel-00005932.
Full textLe diagramme de Voronoï d'un ensemble d'objets est une décomposition de l'espace en zones de proximité. La zone de proximité d'un objet est l'ensemble des points plus proches de cet objet que de tout autre objet. Les diagrammes de Voronoï permettent de répondre aux requètes de proximité après avoir identifié la zone de proximité à laquelle le point objet de la requète appartient. Le graphe dual du diagramme de Voronoï est appelé le graphe de Delaunay. Seules les approximations par des coniques peuvent garantir un ordre de continuité approprié au niveau des points de contact, ce qui est nécessaire pour garantir l'exactitude du graphe de Delaunay.
L'objectif théorique de cette thèse est la mise en évidence des propriétés algébriques et géométriques élémentaires de la courbe déplacée d'une courbe algébrique et de réduire le calcul semi-algébrique du graphe de Delaunay à des calculs de valeurs propres. L'objectif pratique de cette thèse est le calcul certifié du graphe de Delaunay pour des ensembles semi-algébriques de faible degré dans le plan euclidien.
La méthodologie associe l'analyse par intervalles et la géométrie algébrique algorithmique. L'idée centrale de cette thèse est qu'un pré-traitement symbolique unique peut accélérer l'évaluation numérique certifiée du détecteur de conflits dans le graphe de Delaunay. Le pré-traitement symbolique est le calcul de l'équation implicite de la courbe déplacée généralisée d'une conique. La réduction du problème semi-algébrique de la détection de conflits dans le graphe de Delaunay à un problème d'algèbre linéaire a été possible grâce à la considération du sommet de Voronoï généralisé (un concept introduit dans cette thèse).
Le calcul numérique certifié du graphe de Delaunay a été éffectué avec une librairie de résolution de systèmes zéro-dimensionnels d'équations et d'inéquations algébriques basée sur l'analyse d'intervalles (ALIAS). Le calcul certifié du graphe de Delaunay repose sur des théorèmes sur l'unicité de racines dans des intervalles donnés (Kantorovitch et Moore-Krawczyk). Pour les coniques, les calculs sont accélérés lorsque l'on ne considère que les équations implicites des courbes déplacées.
Anton, François. "Voronoi diagrams of semi-algebraic sets." Thesis, 2004. http://hdl.handle.net/2429/15860.
Full textScience, Faculty of
Computer Science, Department of
Graduate
Bauer, Christian [Verfasser]. "Use of computer algebra in the calculation of Feynman diagrams / Christian Bauer." 2005. http://d-nb.info/975883240/34.
Full textNg, David. "Modeling circuit-level leakage current using algebraic decision diagrams." 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=370239&T=F.
Full textLin, Shihchun, and 林施君. "The Study of Line-Diagram Representation on Algebraic Problem Solving Performance for Elementary School Students." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/70845027182030620507.
Full text國立屏東教育大學
數理教育研究所
101
The aim of this research was to find out the fifth grade students’ solving performance of the algebra problems by the teaching strategy of using “line-diagram” representation. The quasi-experimental methodology was adopted and 60 fifth-graders from two classes were chosen as subjects. The researcher taught the experimental group by five steps of “line-diagram” strategy. On the other side, the control group was given the normal teaching strategy eight lessons were implemented in two weeks. This research using the post-test and delay test which researchers designed as assessment tools. Data were analyzed by Analysis of Covariance (ANCOVA) and nonparametric statistic test. According to the students' problem-solving performance, we could find out their strategies using and errors made on problem solving. The result shows that the experimental group students’ performances were significantly higher than the control group on post and delay test. The participants in experimental group have nice learning effects and learning retention effects. Besides, for the middle-achievement students shows more obvious progress on learning. On the problem solving, the control group students were easy to use key-word and functional reciprocal strategy, and it causes the failures on problem solving. However, the experimental group students tried to draw the line segments, and it clearly showed the relations between the numbers. They understood the reciprocal concepts from line segments, so that they can solve the problem successfully. Finally, according to the result, this study brings out some suggestions for teaching and the further research.
Didt, Daniel [Verfasser]. "Linkable Dynkin diagrams and quasi-isomorphisms for finite dimensional pointed Hopf algebras / eingereicht von Daniel Didt." 2002. http://d-nb.info/967079489/34.
Full textOpara, Adam. "Dekompozycyjne metody syntezy układów kombinacyjnych wykorzystujące binarne diagramy decyzyjne." Rozprawa doktorska, 2008. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=5590.
Full textOpara, Adam. "Dekompozycyjne metody syntezy układów kombinacyjnych wykorzystujące binarne diagramy decyzyjne." Rozprawa doktorska, 2008. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=5590.
Full textMarczyński, Grzegorz. "Specifications of Software Architectures using Diagrams of Constructions." Doctoral thesis, 2014.
Find full textMetody formalne umożliwiają uzyskanie najwyższej jakości procesu wytwarzania oprogramowaniaprzez dostarczenie matematycznych dowodów jego poprawności. Jedną ztakich metod są specyfikacje algebraiczne, które podają sposób formalnej specyfikacjiposzczególnych komponentów systemu informatycznego oraz weryfikacji poprawnościwszystkich kroków procesu wytwarzania oprogramowania i w rezultacie dają możliwośćzapewnienia poprawności zarówno całego procesu, jak i samego wynikowego programu.W niniejszej rozprawie proponuje się nowe podejście do algebraicznych specyfikacji architekturoprogramowania zwane diagramami specyfikacji konstrukcji. Wprowadzonejest pojęcie konstrukcji, które są modelami sparametryzowanych modułów wraz z relacjązależności wyrażoną bezpośrednio na symbolach z ich sygnatur. Konstrukcjezapewniają jednolite podejście do parametryzacji pierwszego i wyższych rzędów. Jedynąoperacją na konstrukcjach jest suma, która z powodzeniem zastępuje większośćstandardowych operacji na modułach sparametryzowanych. W rozprawie przedstawianesą specyfikacje konstrukcji, przeprowadzane są badania ich kompozycjonalnościoraz definiowane jest pojęcie uściślenia (ang. refinement) specyfikacji konstrukcji. Diagramyspecyfikacji konstrukcji pozwalają modelować strukturę i rozwój modularnycharchitektur oprogramowania opartych na dekompozycji i uściślaniu specyfikacji konstrukcji.W całym tekście podawane są liczne małe przykłady wprowadzanych pojęć i dyskutowanychproblemów. Na koniec przytoczony jest nieco dłuższy przykład ilustrującykilka kroków rozwoju architektury prostego systemu informatycznego.
Wesslen, Maria. "A Diagrammatic Description of Tensor Product Decompositions for SU(3)." Thesis, 2009. http://hdl.handle.net/1807/19110.
Full text