Academic literature on the topic 'Diagonally dominant linear systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diagonally dominant linear systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Diagonally dominant linear systems"

1

Huang, Rong, Jianzhou Liu, and Li Zhu. "Accurate solutions of diagonally dominant tridiagonal linear systems." BIT Numerical Mathematics 54, no. 3 (2014): 711–27. http://dx.doi.org/10.1007/s10543-014-0481-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Cheng-yi, Dan Ye, Cong-Lei Zhong, and SHUANGHUA SHUANGHUA. "Convergence on Gauss-Seidel iterative methods for linear systems with general H-matrices." Electronic Journal of Linear Algebra 30 (February 8, 2015): 843–70. http://dx.doi.org/10.13001/1081-3810.1972.

Full text
Abstract:
It is well known that as a famous type of iterative methods in numerical linear algebra, Gauss-Seidel iterative methods are convergent for linear systems with strictly or irreducibly diagonally dominant matrices, invertible H−matrices (generalized strictly diagonally dominant matrices) and Hermitian positive definite matrices. But, the same is not necessarily true for linear systems with non-strictly diagonally dominant matrices and general H−matrices. This paper firstly proposes some necessary and sufficient conditions for convergence on Gauss-Seidel iterative methods to establish several new theoretical results on linear systems with nonstrictly diagonally dominant matrices and general H−matrices. Then, the convergence results on preconditioned Gauss-Seidel (PGS) iterative methods for general H−matrices are presented. Finally, some numerical examples are given to demonstrate the results obtained in this paper.
APA, Harvard, Vancouver, ISO, and other styles
3

Doan, T. S., and S. Siegmund. "Finite-Time Attractivity for Diagonally Dominant Systems with Off-Diagonal Delays." Abstract and Applied Analysis 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/210156.

Full text
Abstract:
We introduce a notion of attractivity for delay equations which are defined on bounded time intervals. Our main result shows that linear delay equations are finite-time attractive, provided that the delay is only in the coupling terms between different components, and the system is diagonally dominant. We apply this result to a nonlinear Lotka-Volterra system and show that the delay is harmless and does not destroy finite-time attractivity.
APA, Harvard, Vancouver, ISO, and other styles
4

Shahruz, S. M., and F. Ma. "Approximate Decoupling of the Equations of Motion of Linear Underdamped Systems." Journal of Applied Mechanics 55, no. 3 (1988): 716–20. http://dx.doi.org/10.1115/1.3125855.

Full text
Abstract:
One common procedure in the solution of a normalized damped linear system with small off-diagonal damping elements is to replace the normalized damping matrix by a selected diagonal matrix. The extent of approximation introduced by this method of decoupling the system is evaluated, and tight error bounds are derived. Moreover, if the normalized damping matrix is diagonally dominant, it is shown that decoupling the system by neglecting the off-diagonal elements indeed minimizes the error bound.
APA, Harvard, Vancouver, ISO, and other styles
5

Frommer, A., та G. Mayer. "Linear systems with Ω-diagonally dominant matrices and related ones". Linear Algebra and its Applications 186 (червень 1993): 165–81. http://dx.doi.org/10.1016/0024-3795(93)90289-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Siahlooei, Esmaeil, and Seyed Abolfazl Shahzadeh Fazeli. "Two Iterative Methods for Solving Linear Interval Systems." Applied Computational Intelligence and Soft Computing 2018 (October 8, 2018): 1–13. http://dx.doi.org/10.1155/2018/2797038.

Full text
Abstract:
Conjugate gradient is an iterative method that solves a linear system Ax=b, where A is a positive definite matrix. We present this new iterative method for solving linear interval systems Ãx̃=b̃, where à is a diagonally dominant interval matrix, as defined in this paper. Our method is based on conjugate gradient algorithm in the context view of interval numbers. Numerical experiments show that the new interval modified conjugate gradient method minimizes the norm of the difference of Ãx̃ and b̃ at every step while the norm is sufficiently small. In addition, we present another iterative method that solves Ãx̃=b̃, where à is a diagonally dominant interval matrix. This method, using the idea of steepest descent, finds exact solution x̃ for linear interval systems, where Ãx̃=b̃; we present a proof that indicates that this iterative method is convergent. Also, our numerical experiments illustrate the efficiency of the proposed methods.
APA, Harvard, Vancouver, ISO, and other styles
7

Spielman, Daniel A., and Shang-Hua Teng. "Nearly Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems." SIAM Journal on Matrix Analysis and Applications 35, no. 3 (2014): 835–85. http://dx.doi.org/10.1137/090771430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Guangbin, Hao Wen, and Ting Wang. "Convergence of GAOR Iterative Method with Strictly Diagonally Dominant Matrices." Journal of Applied Mathematics 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/713795.

Full text
Abstract:
We discuss the convergence of GAOR method for linear systems with strictly diagonally dominant matrices. Moreover, we show that our results are better than ones of Darvishi and Hessari (2006), Tian et al. (2008) by using three numerical examples.
APA, Harvard, Vancouver, ISO, and other styles
9

Belhaj, Skander, Fahd Hcini, Maher Moakher, and Yulin Zhang. "A fast algorithm for solving diagonally dominant symmetric quasi-pentadiagonal Toeplitz linear systems." Journal of Mathematical Chemistry 59, no. 3 (2021): 757–74. http://dx.doi.org/10.1007/s10910-021-01217-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tian, Gui-Xian, Ting-Zhu Huang, and Shu-Yu Cui. "Convergence of generalized AOR iterative method for linear systems with strictly diagonally dominant matrices." Journal of Computational and Applied Mathematics 213, no. 1 (2008): 240–47. http://dx.doi.org/10.1016/j.cam.2007.01.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!