Academic literature on the topic 'Determinantal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Determinantal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Determinantal"
Dey, Papri. "Definite determinantal representations of multivariate polynomials." Journal of Algebra and Its Applications 19, no. 07 (July 23, 2019): 2050129. http://dx.doi.org/10.1142/s0219498820501297.
Full textKyrchei, Ivan I. "Determinantal Representations of the Core Inverse and Its Generalizations with Applications." Journal of Mathematics 2019 (October 1, 2019): 1–13. http://dx.doi.org/10.1155/2019/1631979.
Full textMarcus, Marvin. "Determinantal Loci." College Mathematics Journal 23, no. 1 (January 1992): 44. http://dx.doi.org/10.2307/2686198.
Full textFulton, William. "determinantal formulas." Duke Mathematical Journal 65, no. 3 (March 1992): 381–420. http://dx.doi.org/10.1215/s0012-7094-92-06516-1.
Full textBeauville, Arnaud. "Determinantal hypersurfaces." Michigan Mathematical Journal 48, no. 1 (2000): 39–64. http://dx.doi.org/10.1307/mmj/1030132707.
Full textMarcus, Marvin. "Determinantal Loci." College Mathematics Journal 23, no. 1 (January 1992): 44–47. http://dx.doi.org/10.1080/07468342.1992.11973433.
Full textKimura, Kenichiro, Shun-ichi Kimura, and Nobuyoshi Takahashi. "Motivic zeta functions in additive monoidal categories." Journal of K-theory 9, no. 3 (December 8, 2011): 459–73. http://dx.doi.org/10.1017/is011011006jkt174.
Full textStanimirović, Predrag S., and Milan Lj Zlatanović. "Determinantal Representation of Outer Inverses in Riemannian Space." Algebra Colloquium 19, spec01 (October 31, 2012): 877–92. http://dx.doi.org/10.1142/s1005386712000740.
Full textConca, Aldo. "Symmetric ladders." Nagoya Mathematical Journal 136 (December 1994): 35–56. http://dx.doi.org/10.1017/s0027763000024958.
Full textHardy, Adrien, and Mylène Maïda. "Determinantal Point Processes." EMS Newsletter 2019-6, no. 112 (June 6, 2019): 8–15. http://dx.doi.org/10.4171/news/112/3.
Full textDissertations / Theses on the topic "Determinantal"
Konvalinka, Matjaž. "Combinatorics of determinantal identities." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43790.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 125-129).
In this thesis, we apply combinatorial means for proving and generalizing classical determinantal identities. In Chapter 1, we present some historical background and discuss the algebraic framework we employ throughout the thesis. In Chapter 2, we construct a fundamental bijection between certain monomials that proves crucial for most of the results that follow. Chapter 3 studies the first, and possibly the best-known, determinantal identity, the matrix inverse formula, both in the commutative case and in some non-commutative settings (Cartier-Foata variables, right-quantum variables, and their weighted generalizations). We give linear-algebraic and (new) bijective proofs; the latter also give an extension of the Jacobi ratio theorem. Chapter 4 is dedicated to the celebrated MacMahon master theorem. We present numerous generalizations and applications. In Chapter 5, we study another important result, Sylvester's determinantal identity. We not only generalize it to non-commutative cases, we also find a surprising extension that also generalizes the master theorem. Chapter 6 has a slightly different, representation theory flavor; it involves representations of the symmetric group, and also Hecke algebras and their characters. We extend a result on immanants due to Goulden and Jackson to a quantum setting, and reprove certain combinatorial interpretations of the characters of Hecke algebras due to Ram and Remmel.
by Matjaž Konvalinka.
Ph.D.
Petroulakis, G. "The approximate Determinantal Assignment Problem." Thesis, City University London, 2015. http://openaccess.city.ac.uk/11894/.
Full textPereira, Miriam da Silva. "Variedades determinantais e singularidades de matrizes." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22062010-133339/.
Full textThe theorem of Hilbert- Burch provides a good description of codimension two determinantal varieties and their deformations in terms of their presentation matrices. In this work we use this correspondence to study properties of determinantal varieties, based on methods of singularity theory of their presentation matrices. In the first part of the thesis we establish the theory of singularities for n X p matrices extending previous results of J. W. Bruce and F. Tari in [5], for classes of square matrices, and A. Frühbis-Krüger for n X (n+1) matrices in [16]. In the second part we concentrate on codimension two determinantal varieties with isolated singularities. These singularities admit a unique smoothing, thus we can define their Milnor number as the middle Betti number of their generic fiber. For surfaces in \'C POT. 4\' , we obtain a Lê-Greuel formula expressing the Milnor number of the surface in terms of the second polar multiplicity and the Milnor number of the generic section
Piontkowski, Jens. "Compactified Jacobians and symmetric determinantal hypersurfaces." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973256419.
Full textHägg, Jonas. "Gaussian fluctuations in some determinantal processes." Doctoral thesis, KTH, Matematik (Inst.), 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4343.
Full textQC 20100716
Hägg, Jonas. "Gaussian fluctuations in some determinantal processes /." Stockholm : Matematik, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4343.
Full textKennerberg, Philip. "Simulation of interpolating determinantal point processes." Thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-167972.
Full textI denna magisteruppsats presenterar jag lite av den teori som ligger till grund för determinantprocesser. I det första kapitlet går jag igenom en del av den grundläggande teorin kring slumpmått och punktprocesser. I det andra kapitlet introduceras begreppet determinantprocess via så kallade trace-class kärnor. Jag tar upp några av de mest fundamentala satserna i ämnet och några användbara satser för interpolation mellan olika determinantprocesser. En algoritm för simulering av determinantprocesser föreslogs tidigare i [9]. Jag studerar den algoritm och härleder mer explicita formler för implementering. Algoritmen I fråga bygger dock på att den underliggande processen är av en specifik form. Det finns emellertid ett sätt att komma runt detta antagande för att studera en större klass av processer, genom att använda ytterligare ett resultat från [9]. Jag studerar vidare två interpolerande processer som båda interpolerar mellan två andra välkända processer, och använder en implementering av de former jag härlett för simulering, för att undersöka hur interpolation ter sig. På senare tid har determinantprocesser funnit tillämpningar inom det datavetenskapliga ämnet maskininlärning. Inom maskininlärning simulerar man determinantprocesser för att utnyttja deras probabilistiska egenskaper. Det skulle därför kunna vara tänkbart att simuleringsmetoderna (eventuellt även de processer som studeras) som utvecklas här skulle kunna tillämpas inom detta ämne.
Zach, Matthias [Verfasser]. "Topological invariants of isolated determinantal singularities / Matthias Zach." Hannover : Technische Informationsbibliothek (TIB), 2017. http://d-nb.info/1150664274/34.
Full textMariet, Zelda Elaine. "Learning and enforcing diversity with Determinantal Point Processes." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103671.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 63-66).
As machine-learning techniques continue to require more data and become increasingly memory-heavy, being able to choose a subset of relevant, high-quality and diverse elements among large amounts of redundant or noisy data and parameters has become an important concern. Here, we approach this problem using Determinantal Point Processes (DPPs), probabilistic models that provide an intuitive and powerful way of balancing quality and diversity in sets of items. We introduce a novel, fixed-point algorithm for estimating the maximum likelihood parameters of a DPP, provide proof of convergence and discuss generalizations of this technique. We then apply DPPs to the difficult problem of detecting and eliminating redundancy in fully-connected layers of neural networks. By placing a DPP over a layer, we are able to sample a subset of neurons that perform non-overlapping computations and merge all other neurons of the layer into the previous diverse subset. This allows us to significantly reduce the size of the neural network while simultaneously maintaining a good performance.
by Zelda Elaine Mariet.
S.M.
Naldi, Simone. "Exact algorithms for determinantal varieties and semidefinite programming." Thesis, Toulouse, INSA, 2015. http://www.theses.fr/2015ISAT0021/document.
Full textIn this thesis we focus on the study of determinantal structures arising in semidefinite programming (SDP), the natural extension of linear programming to the cone of symetric positive semidefinite matrices. While the approximation of a solution of a semidefinite program can be computed efficiently by interior-point algorithms, neither efficient exact algorithms for SDP are available, nor a complete understanding of its theoretical complexity has been achieved. In order to contribute to this central question in convex optimization, we design an exact algorithm for deciding the feasibility of a linear matrix inequality (LMI) $A(x) \succeq 0$. When the spectrahedron $\spec = \{x \in \RR^n \mymid A(x) \succeq 0\}$ is not empty, the output of this algorithm is an algebraic representation of a finite set meeting $\spec$ in at least one point $x^*$: in this case, the point $x^*$ minimizes the rank of the pencil on the spectrahedron. The complexity is essentially quadratic in the degree of the output representation, which meets, experimentally, the algebraic degree of semidefinite programs associated to $A(x)$. This is a guarantee of optimality of this approach in the context of exact algorithms for LMI and SDP. Remarkably, the algorithm does not assume the presence of an interior point in the spectrahedron, and it takes advantage of the existence of low rank solutions of the LMI. In order to reach this main goal, we develop a systematic approach to determinantal varieties associated to linear matrices. Indeed, we prove that deciding the feasibility of a LMI can be performed by computing a sample set of real solutions of determinantal polynomial systems. We solve this problem by designing an exact algorithm for computing at least one point in each real connected component of the locus of rank defects of a pencil $A(x)$. This algorithm admits as input generic linear matrices but takes also advantage of additional structures, and its complexity improves the state of the art in computational real algebraic geometry. Finally, the algorithms developed in this thesis are implemented in a new Maple library called {Spectra}, and results of experiments highlighting the complexity gain are provided
Books on the topic "Determinantal"
Cornel, Baetica, ed. Combinatorics of determinantal ideals. New York: Nova Publishers, 2006.
Find full textBruns, Winfried, and Udo Vetter. Determinantal Rings. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0080378.
Full textBruns, Winfried. Determinantal rings. Berlin: Springer-Verlag, 1988.
Find full textDeterminantal ideals. Basel: Birkhäuser, 2008.
Find full textIarrobino, Anthony, and Vassil Kanev. Power Sums, Gorenstein Algebras, and Determinantal Loci. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0093426.
Full textHough, J. Ben. Zeros of Gaussian analytic functions and determinantal point processes. Providence, R.I: American Mathematical Society, 2009.
Find full text1979-, Hough J. Ben, ed. Zeros of Gaussian analytic functions and determinantal point processes. Providence, R.I: American Mathematical Society, 2009.
Find full text1979-, Hough J. Ben, ed. Zeros of Gaussian analytic functions and determinantal point processes. Providence, R.I: American Mathematical Society, 2009.
Find full textKebza, Vladimír. Psychosociální determinanty zdraví: Psychosocial determinants of health. Praha: Academia, 2005.
Find full textJerzy, Mierzejewski Donat, and Jan Polcyn. Rozwój regionalny i jego determinanty: Regional development and its determinants. Piła: Państwowa Wyższa Szkoła Zawodowa im. Stanisława Staszica, 2014.
Find full textBook chapters on the topic "Determinantal"
Harris, Joe. "Determinantal Varieties." In Algebraic Geometry, 98–113. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2189-8_9.
Full textArbarello, E., M. Cornalba, P. A. Griffiths, and J. Harris. "Determinantal Varieties." In Grundlehren der mathematischen Wissenschaften, 61–106. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-5323-3_2.
Full textLakshmibai, V., and Justin Brown. "Determinantal Varieties." In The Grassmannian Variety, 143–53. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3082-1_10.
Full textWeiss, Thomas, Patrik Ferrari, and Herbert Spohn. "Determinantal Point Processes." In Reflected Brownian Motions in the KPZ Universality Class, 25–30. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49499-9_3.
Full textDecreusefond, Laurent, Ian Flint, Nicolas Privault, and Giovanni Luca Torrisi. "Determinantal Point Processes." In Stochastic Analysis for Poisson Point Processes, 311–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-05233-5_10.
Full textHough, J., Manjunath Krishnapur, Yuval Peres, and Bálint Virág. "Determinantal point processes." In University Lecture Series, 47–81. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/ulect/051/04.
Full textHough, J., Manjunath Krishnapur, Yuval Peres, and Bálint Virág. "A determinantal zoo." In University Lecture Series, 99–117. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/ulect/051/06.
Full textConstantinescu, Tiberiu. "Determinantal Formulae and Optimization." In Schur Parameters, Factorization and Dilation Problems, 203–22. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9108-0_8.
Full textQiao, Youming, Xiaoming Sun, and Nengkun Yu. "Determinantal Complexities and Field Extensions." In Algorithms and Computation, 119–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45030-3_12.
Full textMitrinović, D. S., J. E. Pečarić, and A. M. Fink. "Some Determinantal and Matrix Inequalities." In Classical and New Inequalities in Analysis, 211–38. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-1043-5_8.
Full textConference papers on the topic "Determinantal"
Meister, Clara, Martina Forster, and Ryan Cotterell. "Determinantal Beam Search." In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.acl-long.512.
Full textTremblay, Nicolas, Pierre-Olivier Amblard, and Simon Barthelme. "Graph sampling with determinantal processes." In 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017. http://dx.doi.org/10.23919/eusipco.2017.8081494.
Full textWarlop, Romain, Jérémie Mary, and Mike Gartrell. "Tensorized Determinantal Point Processes for Recommendation." In KDD '19: The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3292500.3330952.
Full textGartrell, Mike, Ulrich Paquet, and Noam Koenigstein. "Bayesian Low-Rank Determinantal Point Processes." In RecSys '16: Tenth ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2959100.2959178.
Full textLiu, Yuli, Christian Walder, and Lexing Xie. "Determinantal Point Process Likelihoods for Sequential Recommendation." In SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3477495.3531965.
Full textSharma, Ganesh, and Subhrakanti Dey. "On Analog Distributed Approximate Newton with Determinantal Averaging." In 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2022. http://dx.doi.org/10.1109/pimrc54779.2022.9977466.
Full textBlaszczyszyn, B., and H. P. Keeler. "Determinantal thinning of point processes with network learning applications." In 2019 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2019. http://dx.doi.org/10.1109/wcnc.2019.8885526.
Full textLi, Yingzhe, Francois Baccelli, Harpreet S. Dhillon, and Jeffrey G. Andrews. "Fitting determinantal point processes to macro base station deployments." In GLOBECOM 2014 - 2014 IEEE Global Communications Conference. IEEE, 2014. http://dx.doi.org/10.1109/glocom.2014.7037373.
Full textWilhelm, Mark, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H. Chi, and Jennifer Gillenwater. "Practical Diversified Recommendations on YouTube with Determinantal Point Processes." In CIKM '18: The 27th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3269206.3272018.
Full textLi, Lei, Zuying Huang, and Yazhao Zhang. "Quality-Diversity Automatic Summarization based on Determinantal Point Processes." In 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, 2019. http://dx.doi.org/10.1109/itaic.2019.8785485.
Full textReports on the topic "Determinantal"
Barro, Robert, and Rachel McCleary. International Determinants of Religiosity. Cambridge, MA: National Bureau of Economic Research, December 2003. http://dx.doi.org/10.3386/w10147.
Full textLopez-de-Silane, Florencio. Determinants of Privatization Prices. Cambridge, MA: National Bureau of Economic Research, March 1996. http://dx.doi.org/10.3386/w5494.
Full textAlesina, Alberto, and Eliana La Ferrara. The Determinants of Trust. Cambridge, MA: National Bureau of Economic Research, March 2000. http://dx.doi.org/10.3386/w7621.
Full textCutler, David, Angus Deaton, and Adriana Lleras-Muney. The Determinants of Mortality. Cambridge, MA: National Bureau of Economic Research, January 2006. http://dx.doi.org/10.3386/w11963.
Full textChu, Lisa W. Dietary Determinants of Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada439274.
Full textMitchell, Cynthia L. Weight Maintenance: Determinants of Success. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada441738.
Full textDingel, Jonathan. The Determinants of Quality Specialization. Cambridge, MA: National Bureau of Economic Research, October 2016. http://dx.doi.org/10.3386/w22757.
Full textSimpson, Jennifer K., Francesmary Modugno, Joel L. Weissfeld, Lewis Kuller, Victor Vogel, and Joseph P. Costantino. Hormonal Determinants of Mammographic Density. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada432434.
Full textHorne, David K., and Mary Weltin. Determinants of Army Career Intentions. Fort Belvoir, VA: Defense Technical Information Center, November 1985. http://dx.doi.org/10.21236/ada178672.
Full textPorta, Rafael La, Florencio Lopez-de-Silane, Andrei Shleifer, and Robert Vishny. Legal Determinants of External Finance. Cambridge, MA: National Bureau of Economic Research, January 1997. http://dx.doi.org/10.3386/w5879.
Full text