Academic literature on the topic 'Détection optomécanique'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Détection optomécanique.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Détection optomécanique"

1

Hermouet, Maxime. "Microdisques optomécaniques résonants en silicium pour la détection biologique en milieu liquide." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT013/document.

Full text
Abstract:
La détection précoce de biomarqueurs de maladies telles que le cancer représente un intérêt majeur dans le processus de traitement. En effet, un diagnostic avancé augmente considérablement les chances de réussite du traitement. En pratique, cela nécessite des outils permettant de détecter rapidement d'infimes quantités de composants biologiques (anticorps, protéines, ADN...) au sein d'échantillons réels tels que du sang ou du sérum.Ces dernières années, les avancées et progrès technologiques en matière de micro et nanofabrication ont permis le développement des Micro et Nano Systèmes Electro-Mécaniques (M/NEMS) dans de nombreux domaines d'application et notamment celui de la détection de masse. Ainsi, des nano-capteurs de masse atteignant des résolutions de l'ordre du yoctogram ($10^{-24}g$), soit la masse d'un seul proton ont été développés. De telles résolutions permettraient d'utiliser ces capteurs à des fins de biodétection. Ces résultats ont cependant été obtenus sous vide ce qui est incompatible avec le monde biologique. Immergés en liquide, les performances des M/NEMS traditionnels sont drastiquement réduites notamment à cause de l'amortissement du au fluide. Un nouveau type de résonateur à base de microdisques optomécaniques résonants a ainsi vu le jour démontrant un fort potentiel pour la détection en milieu liquide. Là où les méthodes classiques de transduction électriques des M/NEMS éprouvent des difficultés en liquide, l'exceptionnelle sensibilité de la transduction optomécanique permet de surmonter ce problème.Dans ce cadre, ces travaux de thèse visent à développer un biocapteur à base de microdisques optomécaniques résonants en silicium pour la détection biologique en milieu liquide. Le design, la fabrication ainsi que la caractérisation complète de ces capteurs est décrite. Enfin, une preuve de concept de détection de virus T5 à une concentration de quelques pM à l'aide de ces microdisques est également présentée
Early detection of disease's biomarkers such as cancer represents a major interest in the treatment process. Indeed, a diagnosis at an early stage considerably increases the chance of the treatment to be successful. Practically, tools allowing the rapid detection of tiny amount of biological compounds (antibodies, proteins, DNA...) in real samples such as blood or serum are needed.Over the last years, the advances and progresses of micro and nanofabrication techniques have allowed the development of Micro-Nano Electro Mechanical Systems (M/NEMS) in various fields of application including mass sensing. Thus, nano mass sensors reaching resolution down to the yoctogram level, the equivalent of a single proton have been demonstrated. Such resolution limit would theoretically allow these sensors to be used as potential biosensors. These results were nonetheless obtained in vacuum conditions which is incompatible with the biological world. Immersed in fluid, the performance of traditional M/NEMS are drastically degraded mostly due to the large viscous damping. A new type of object in the form of optomechanical microdisk resonators have recently emerged, demonstrating a huge potential for sensing in liquid. While M/NEMS classical electrical or optical transduction methods become very challenging in liquid, the astonishing sensitivity of the optomechanical transduction overcomes this major issue.In this context, this thesis work aims at developing a biosensor based on silicon optomechanical microdisk resonators for biosensing in liquid. Design, fabrication along with the complete characterization of theses devices is described. Eventually, a proof-of-concept of T5 virus detection at the pM level using these microdisks is presented
APA, Harvard, Vancouver, ISO, and other styles
2

Caniard, Thomas. "Couplage optomécanique, action en retour et limites quantiques dans les mesures optiques ultrasensibles." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00164656.

Full text
Abstract:
Nous présentons une expérience de mesure optique ultrasensible de petits déplacements d'un miroir. Grâce à l'utilisation d'une cavité Fabry-Perot de très grande finesse, nous avons atteint une sensibilité de 10-20 m.Hz-1/2 sur une plage de plusieurs centaines de kilohertz.

Notre montage permet de mener une étude approfondie des sources de bruit dans une mesure optique et des limites de sensibilité associées. Nous nous intéressons en particulier au couplage optomécanique résultant de l'action réciproque entre la lumière et un miroir mobile. Par l'intermédiaire de la force de pression de radiation, les fluctuations quantiques d'intensité du faisceau génèrent un bruit de position supplémentaire du miroir. Ce bruit constitue l'action en retour de la mesure de position et entraîne l'existence de limites quantiques de sensibilité.

Parmi les améliorations réalisées sur le montage, nous avons mis en place un système de double injection de faisceaux laser dans la cavité afin d'étudier les effets quantiques du couplage optomécanique. Nous avons mis en évidence une suppression de l'action en retour de la mesure par interférence destructive entre les réponses des deux miroirs formant la cavité. Nous discutons des applications potentielles de cet effet afin d'améliorer la sensibilité des mesures optiques, notamment pour les détecteurs doublement résonnants d'ondes gravitationnelles.
APA, Harvard, Vancouver, ISO, and other styles
3

Hadjar, Yassine. "Etude du couplage optomécanique dans une cavité de grande finesse; observation du mouvement Brownien d'un miroir." Phd thesis, Université Pierre et Marie Curie - Paris VI, 1998. http://tel.archives-ouvertes.fr/tel-00004675.

Full text
Abstract:
Nous étudions théoriquement et expérimentalement le couplage optomécanique induit par la pression de radiation entre un faisceau lumineux et un objet macroscopique tel qu'un miroir. Nous présentons une étude théorique des effets quantiques induits par la pression de radiation dans une cavité optique dont un miroir est mobile. Le miroir peut se déplacer sous l'effet de la pression de radiation et ce mouvement change la phase du champ réfléchi par la cavité. Ce couplage optomécanique induit un déphasage du champ équivalent à un effet Kerr optique. Un tel dispositif peut être utilisé pour produire des états comprimés ou réaliser une mesure quantique non destructive.
Nous présentons les résultats obtenus dans notre expérience où un faisceau laser est envoyé dans une cavité à une seule entrée-sortie, dont le miroir mobile est déposé sur un résonateur mécanique. Nous avons observé le mouvement Brownien du miroir. Nous avons aussi utilisé un second faisceau modulé en intensité afin d'exciter les modes acoustiques du résonateur. Ceci permet de caractériser la réponse mécanique du résonateur et le couplage entre la lumière et les modes acoustiques. Nous avons enfin démontré l'efficacité de notre dispositif pour la mesure de petits déplacements du miroir. Le plus petit déplacement observable est égale à 2x10^(-19) m/Hz(1/2), en bon accord avec la prédiction théorique.
APA, Harvard, Vancouver, ISO, and other styles
4

Neshasteh, Hamidreza. "Ultra-high frequency optomechanical disk resonators in liquids." Electronic Thesis or Diss., Université Paris Cité, 2023. http://www.theses.fr/2023UNIP7132.

Full text
Abstract:
Dans cette thèse, nous présentons une étude approfondie des résonateurs à disques optomécaniques ultra-haute fréquence, en fonctionnement dans divers environnements liquides. L'objectif du travail était de développer des techniques expérimentales optiques et des modèles théoriques pour étudier les interactions fluide-structure dans des dispositifs micro ou nanométriques vibrants, ayant des applications potentielles en fluidique, en détection pour le biomédical et en science des matériaux. Nous avons appliqué des techniques de transduction optomécaniques à des résonateurs à disque en silicium pour mesurer diverses propriétés des liquides. En s'appuyant sur des modèles analytiques et numériques, nos mesures permettent de remonter à l'indice de réfraction, la conductivité thermique, la viscosité, la densité et la compressibilité du liquide. Nous avons notamment obtenu des expressions explicites pour le décalage en fréquence et le facteur de qualité mécanique d'un disque immergé dans un liquide, le transformant en un rhéomètre calibré. Puisque ce rhéomètre couvre la gamme de fréquences de 200 MHz à 3 GHz, nous avons pu observer d'importants effets de compressibilité dans l'eau, et confirmé que ce liquide reste pour autant newtonien dans cette gamme. En revanche, le 1-décanol liquide présente un comportement non newtonien, avec une viscosité dépendant de la fréquence, et des temps de relaxation associés proche de la nanoseconde que nous avons pu mettre en évidence expérimentalement. Le travail de thèse apporte un éclairage sur le comportement des résonateurs à disque optomécanique immergés, et démontre leur potentiel pour sonder les propriétés multiphysiques d'un liquide à l'échelle micronique
In this thesis, we present an in-depth study of ultra-high frequency optomechanical disk resonators operating in various liquid environments. The goal of the work was to develop optical experimental techniques and theoretical models to study fluid-structure interactions in micro- and nanoscale vibrating devices, with potential applications in fluidics, biomedical sensing, and materials science. We employed optomechanical transduction techniques on silicon disk resonators to measure various properties of liquids. Backed by analytical and numerical models, our measurements give access to the liquid's refractive index, thermal conductivity, viscosity, density, and compressibility. We notably derived closed-formed expressions for the mechanical frequency shift and quality factor of a disk immersed in liquid, transforming it into a calibrated rheometer. As this rheometer covers the frequency range from 200 MHz to 3 GHz, we observed pronounced compressibility effects in liquid water, and confirmed that this liquid remains Newtonian in this range. In contrast, 1-decanol liquid exhibits a non-Newtonian behavior, with a frequency-dependent viscosity associated with relaxation times that we could reveal experimentally. The thesis work provides insights into the behavior of immersed optomechanical disk resonators and demonstrates their potential to probe the multiphysics properties of a liquid at the micron scale
APA, Harvard, Vancouver, ISO, and other styles
5

Harder, Thomas. "Atténuation des instabilités paramétriques basée sur la pression de radiation dans les détecteurs d’ondes gravitationnelles." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4005.

Full text
Abstract:
La première détection directe des ondes gravitationnelles (OG) a eu lieu en 2015 grâce aux interféromètres, interféromètre de type Michelson à recyclage possédant des cavités Fabry Perot de plusieurs km de longueur dans les bras. Ces cavités permettent une puissance optique élevée, nécessaire pour réduire le bruit de grenaille des détecteurs. Une instabilité paramétrique (IP) est un phénomène optomécanique non linéaire qui transfère une partie de l’énergie du faisceau à un mode propre d’un miroir et à un mode optique d’ordre élevé dont les amplitudes croissent de façon exponentielle. Sans atténuation, l’instabilité fait perdre le contrôle de l’interféromètre.Différentes stratégies d’atténuation les IP ont été proposées et ont été intégrées dans les détecteurs qui ont pu ainsi fonctionner jusqu’au niveau actuel de puissance optique. Pour les détecteurs de prochaine génération, une augmentation de sensibilité d’un facteur dix est visée par rapport aux détecteurs actuels. Une manière d’atteindre ce but consiste à augmenter la puissance optique dans les cavités des bras. Cette augmentation pourrait impliquer plus d’IP, plus difficiles à atténuer.Dans cette thèse nous proposons une méthode active et flexible d’atténuation des IP, qui utilise la pression de radiation d’un faisceau laser dédié. L’idée est d’appliquer une contre pression sur plusieurs points du miroir grâce à un petit faisceau laser, avec des fréquences de dizaine de kHz. A cette fin, la déflection rapide du faisceau est requise. Par ailleurs, il faut être capable de détecter les IP dès leur naissance, au niveau de l’excitation thermique.Cette thèse présente les premières études expérimentales d’un tel système : la déflection rapide basée sur des modulateurs acousto-optiques est explorée. Une fréquence de déflection de 10 MHz en 2D est démontrée. La puissance optique maximale du faisceau dévié est 3,6 W, ce qui correspond à une force de pression de radiation de 24 nN. Ces caractéristiques remplissent les conditions nécessaires.La détection des modes mécaniques d’un miroir est étudiée à l’aide d’un system utilisant un interféromètre de Michelson. La sensibilité obtenue pour un faisceau en position fixe sur le miroir correspond à un changement de longueur de bras de δL = 4.8 · 10^-14 m/√Hz. Cette valeur est environ un ordre de grandeur plus élevée que le déplacement de la surface du miroir due à l’excitation thermique des modes mécaniques. Des propositions sont données pour améliorer la sensibilité de l’interféromètre et pour utiliser ce système pour étudier l’atténuation active des modes propre d’un miroir par la pression de radiation
Direct detection of Gravitational Waves was demonstrated for the first time in 2015 with km-scale Michelson interferometers. In order to reduce the shot noise at high frequency of these detectors high optical power in the arm cavities is needed. At that high circulating power a nonlinear optomechanical phenomenon called parametric instability (PI) may occur that induce the amplification of mirror’s eigenmodes. It limits the optical power and can cause the loss of the interferometer’s control if notmitigated.Several PI mitigation strategies have been proposed and already implemented in current gravitational wave detectors. These schemes keep them working without PI at the current optical power level in the cavities but they are not adapted to PI involving any kind of mechanical mirror modes, which needs to be considered when the optical circulation power is increased further. Next generation detectors aim at increasing their sensitivity of a factor of ten compared to current detectors. This can be achieved, inter alia, through the increase of the optical power in the arm cavities which will imply more PI.In this thesis an active and flexible PI mitigation strategy based on radiation pressure of a movable laser beam is proposed. The idea is to apply a damping force to mitigate PI. Fast beam steering is required to point at different positions of the cavity mirror with a small laser spot during one period of the mechanical mode with frequencies in the kHz-range. A sensitive sensing method is required to detect PI at the level ofthermal excitation.First experimental studies of a table-top setup are presented: rapid beam deflection based on acousto-optic modulators is investigated. A final configuration with 2D arbitrary beam steering with a maximal deflection rate of 10 MHz is demonstrated for a maximal optical power of 3.6 W, corresponding to a radiation pressure force of 24 nN. It satisfies the requirements of the laser beam that should be used as radiation pressure force for our proposed PI damping scheme.Sensing of mechanical mirror modes is investigated with the 2D beam steering system based on a Michelson interferometer. A sensitivity corresponding to a differential arm length change of δL = 4.8 · 10^-14 m/√Hz is achieved for a fixed beam position on the mirror. It is around one order of magnitude higher than the expected displacement of the mirror due to thermally excited mirror modes. Propositions are given to improve the sensitivity of the interferometer and to use the same setup to investigate active damping of mirror modes via radiation pressure
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography