Academic literature on the topic 'Détection des points caractéristiques du visage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Détection des points caractéristiques du visage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Détection des points caractéristiques du visage"
Ferraz, Antonio. "DÉTECTION À HAUTE RÉSOLUTION SPATIALE DE LA DESSERTE FORESTIÈRE EN MILIEU MONTAGNEUX." Revue Française de Photogrammétrie et de Télédétection 1, no. 211-212 (December 6, 2015): 103–17. http://dx.doi.org/10.52638/rfpt.2015.549.
Full textLaskri, Mohamed Tayeb, and Djallel Chefrour. "Who_Is : Identification system of human faces." Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 1, 2002 (November 4, 2002). http://dx.doi.org/10.46298/arima.1830.
Full textDissertations / Theses on the topic "Détection des points caractéristiques du visage"
Mallat, Khawla. "Efficient integration of thermal technology in facial image processing through interspectral synthesis." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS223.
Full textThermal imaging technology has significantly evolved during the last couple of decades, mostly thanks to thermal cameras having become more affordable and user friendly. However, and given that the exploration of thermal imagery is reasonably new, only a few public databases are available to the research community. This limitation consequently prevents the impact of deep learning technologies from generating improved and reliable face biometric systems that operate in the thermal spectrum. A possible solution relates to the development of technologies that bridge the gap between visible and thermal spectra. In attempting to respond to this necessity, the research presented in this dissertation aims to explore interspectral synthesis as a direction for efficient and prompt integration of thermal technology in already deployed face biometric systems.As a first contribution, a new database, containing paired visible and thermal face images acquired simultaneously, was collected and made publicly available to foster research in thermal face image processing. Motivated by the need for fast and straightforward integration into existing face recognition systems, a set of contributions consisted in proposing a cross-spectrum face recognition framework based on a novel approach of thermal-to-visible face synthesis in order to estimate the visible face from the thermal input. Contributions consisting in exploring interspectral synthesis from visible to thermal spectrum for facial image processing tasks related to, but different than face recognition, are also presented including facial landmark detection and face biometric spoofing in thermal spectrum
Ni, Weiyuan. "Recalage d'images de visage." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENT045/document.
Full textFace alignment is an important step in a typical automatic face recognition system.This thesis addresses the alignment of faces for face recognition applicationin video surveillance context. The main challenging factors of this research includethe low quality of images (e.g., low resolution, motion blur, and noise), uncontrolledillumination conditions, pose variations, expression changes, and occlusions. In orderto deal with these problems, we propose several face alignment methods using differentstrategies. The _rst part of our work is a three-stage method for facial pointlocalization which can be used for correcting mis-alignment errors. While existingalgorithms mostly rely on a priori knowledge of facial structure and on a trainingphase, our approach works in an online mode without requirements of pre-de_nedconstraints on feature distributions. The proposed method works well on images underexpression and lighting variations. The key contributions of this thesis are aboutjoint image alignment algorithms where a set of images is simultaneously alignedwithout a biased template selection. We respectively propose two unsupervised jointalignment algorithms : \Lucas-Kanade entropy congealing" (LKC) and \gradient correlationcongealing" (GCC). In LKC, an image ensemble is aligned by minimizing asum-of-entropy function de_ned over all images. GCC uses gradient correlation coef-_cient as similarity measure. The proposed algorithms perform well on images underdi_erent conditions. To further improve the robustness to mis-alignments and thecomputational speed, we apply a multi-resolution framework to joint face alignmentalgorithms. Moreover, our work is not limited in the face alignment stage. Since facealignment and face acquisition are interrelated, we develop an adaptive appearanceface tracking method with alignment feedbacks. This closed-loop framework showsits robustness to large variations in target's state, and it signi_cantly decreases themis-alignment errors in tracked faces
Belmonte, Romain. "Facial landmark detection with local and global motion modeling." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I066/document.
Full textFacial landmark detection is an essential task for a large number of applications such as facial analysis (e.g., identification, expression, 3D reconstruction), human-computer interaction or even multimedia (e.g., content indexing and retrieval). Although many approaches have been proposed, performance under uncontrolled conditions is still not satisfactory. The variations that may impact facial appearance (e.g., pose, expression, illumination, occlusion, motion blur) make it a difficult problem to solve. In this thesis, a contribution to both the analysis of the performance of current approaches and the modeling of temporal information for video-based facial landmark detection is made. An experimental study is conducted using a video dataset to measure the impact of pose and expression variations on landmark detection. This evaluation highlights the most difficult poses and expressions to handle. It also illustrates the importance of a suitable temporal modeling to benefit from the dynamic nature of the face. A focus is then placed on improving temporal modeling to ensure consideration of local motion in addition to global motion. Several architectures are designed based on the two main models from the literature: coordinate regression networks and heatmap regression networks. Experiments on two datasets confirm that local motion modeling improves results (e.g. in the presence of expressions). These experiments are extended with a study on the complementarity between spatial and temporal information as well as local and global motion to improve the design of the proposed architectures. By leveraging these complementarities more effectively, competitive performance with current state-of-the-art approaches is achieved, despite the simplicity of the proposed models
Chapel, Marie-Neige. "Détection d’objets en mouvement à l’aide d’une caméra mobile." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1156/document.
Full textMoving objects detection in video streams is a commonly used technique in many computer vision algorithms. The detection becomes more complex when the camera is moving. The environment observed by this type of camera appeared moving and it is more difficult to distinguish the objects which are in movement from the others that composed the static part of the scene. In this thesis we propose contributions for the detection of moving objects in the video stream of a moving camera. The main idea to differenciate between moving and static objects based on 3D distances. 3D positions of feature points extracted from images are estimated by triangulation and then their 3D motions are analyzed in order to provide a sparse static/moving labeling. To provide a more robust detection, the analysis of the 3D motions is compared to those of feature points previously estimated static. A confidance value updated over time is used to decide on labels to attribute to each point.We make experiments on virtual (from the Previz project 1) and real datasets (known by the community [Och+14]) and we compare the results with the state of the art. The results show that our 3D constraint coupled with a statistical and temporal analysis of motions allow to detect moving elements in the video stream of a moving camera even in complex cases where apparent motions of the scene are not similars
Pham, The Anh. "Détection robuste de jonctions et points d'intérêt dans les images et indexation rapide de caractéristiques dans un espace de grande dimension." Thesis, Tours, 2013. http://www.theses.fr/2013TOUR4023/document.
Full textLocal features are of central importance to deal with many different problems in image analysis and understanding including image registration, object detection and recognition, image retrieval, etc. Over the years, many local detectors have been presented to detect such features. Such a local detector usually works well for some particular applications but not all. Taking an application of image retrieval in large database as an example, an efficient method for detecting binary features should be preferred to other real-valued feature detection methods. The reason is easily seen: it is expected to have a reasonable precision of retrieval results but the time response must be as fast as possible. Generally, local features are used in combination with an indexing scheme. This is highly needed for the case where the dataset is composed of billions of data points, each of which is in a high-dimensional feature vector space
Faula, Yannick. "Extraction de caractéristiques sur des images acquises en contexte mobile : Application à la reconnaissance de défauts sur ouvrages d’art." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI077.
Full textThe french railway network has a huge infrastructure which is composed of many civil engineering structures. These suffer from degradation of time and traffic and they are subject to a periodic monitoring in order to detect appearance of defects. At the moment, this inspection is mainly done visually by monitoring operators. Several companies test new vectors of photo acquisition like the drone, designed for civil engineering monitoring. In this thesis, the main goal is to develop a system able to detect, localize and save potential defects of the infrastructure. A huge issue is to detect sub-pixel defects like cracks in real time for improving the acquisition. For this task, a local analysis by thresholding is designed for treating large images. This analysis can extract some points of interest (FLASH points: Fast Local Analysis by threSHolding) where a straight line can sneak in. The smart spatial relationship of these points allows to detect and localise fine cracks. The results of the crack detection on concrete degraded surfaces coming from images of infrastructure show better performances in time and robustness than the state-of-art algorithms. Before the detection step, we have to ensure the acquired images have a sufficient quality to make the process. A bad focus or a movement blur are prohibited. We developed a method reusing the preceding computations to assess the quality in real time by extracting Local Binary Pattern (LBP) values. Then, in order to make an acquisition for photogrammetric reconstruction, images have to get a sufficient overlapping. Our algorithm, reusing points of interest of the detection, can make a simple matching between two images without using algorithms as type RANSAC. Our method has invariance in rotation, translation and scale range. After the acquisition, with images with optimal quality, it is possible to exploit methods more expensive in time like convolution neural networks. These are not able to detect cracks in real time but can detect other kinds of damages. However, the lack of data requires the constitution of our database. With approaches of independent classification (classifier SVM one-class), we developed a dynamic system able to evolve in time, detect and then classify the different kinds of damages. No system like ours appears in the literature for the defect detection on civil engineering structure. The implemented works on feature extraction on images for damage detection will be used in other applications as smart vehicle navigation or word spotting
Nicolle, Jérémie. "Reading Faces. Using Hard Multi-Task Metric Learning for Kernel Regression." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066043/document.
Full textCollecting and labeling various and relevant data for training automatic facial information prediction systems is both hard and time-consuming. As a consequence, available data is often of limited size compared to the difficulty of the prediction tasks. This makes overfitting a particularly important issue in several face-related machine learning applications. In this PhD, we introduce a novel method for multi-dimensional label regression, namely Hard Multi-Task Metric Learning for Kernel Regression (H-MT-MLKR). Our proposed method has been designed taking a particular focus on overfitting reduction. The Metric Learning for Kernel Regression method (MLKR) that has been proposed by Kilian Q. Weinberger in 2007 aims at learning a subspace for minimizing the quadratic training error of a Nadaraya-Watson estimator. In our method, we extend MLKR for multi-dimensional label regression by adding a novel multi-task regularization that reduces the degrees of freedom of the learned model along with potential overfitting. We evaluate our regression method on two different applications, namely landmark localization and Action Unit intensity prediction. We also present our work on automatic emotion prediction in a continuous space which is based on the Nadaraya-Watson estimator as well. Two of our frameworks let us win international data science challenges, namely the Audio-Visual Emotion Challenge (AVEC’12) and the fully continuous Facial Expression Recognition and Analysis challenge (FERA’15)
Zhao, Xi. "3D face analysis : landmarking, expression recognition and beyond." Phd thesis, Ecole Centrale de Lyon, 2010. http://tel.archives-ouvertes.fr/tel-00599660.
Full textBook chapters on the topic "Détection des points caractéristiques du visage"
PHAM, Minh-Tan, and Grégoire MERCIER. "Détection de changements sur les graphes de séries SAR." In Détection de changements et analyse des séries temporelles d’images 1, 183–219. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9056.ch7.
Full text