Academic literature on the topic 'Detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Detection"
Qian, Sen. "What Is Detection?" Detection 02, no. 02 (2014): 7–9. http://dx.doi.org/10.4236/detection.2014.22002.
Full textSugiura, Hiroki, Shinichi Demura, Yoshinori Nagasawa, Shunsuke Yamaji, Tamotsu Kitabayashi, Shigeki Matsuda, Takayoshi Yamada, and Ning Xu. "Relationship between Extent of Coffee Intake and Recognition of Its Effects and Ingredients." Detection 01, no. 01 (2013): 1–6. http://dx.doi.org/10.4236/detection.2013.11001.
Full textBrandão, Marcelo Luiz Lima, Carla de Oliveira Rosas, Silvia Maria Lopes Bricio, Valéria de Mello Medeiros, Juliana de Castro Beltrão da Costa, Rodrigo Rollin Pinheiro, Paola Cardarelli-Leite, Marcus Henrique Campino de La Cruz, and Armi Wanderley da Nóbrega. "Preparation of Reference Material for Proficiency Test for Enumeration of Coliforms in Cheese Matrix." Detection 01, no. 01 (2013): 7–12. http://dx.doi.org/10.4236/detection.2013.11002.
Full textZhang, Jianyong, Xiao Cai, and Xiaohu Mo. "On Two Cryogenic Systems of High Purity Germanium Detector." Detection 01, no. 02 (2013): 13–20. http://dx.doi.org/10.4236/detection.2013.12003.
Full textChuto, Maneenuch, Sudkate Chaiyo, Weena Siangproh, and Orawon Chailapakul. "A Rapid Separation and Highly Determination of Paraben Species by Ultra-Performance Liquid Chromatography —Electrochemical Detection." Detection 01, no. 02 (2013): 21–29. http://dx.doi.org/10.4236/detection.2013.12004.
Full textCardone, Fabio, Giovanni Cherubini, Walter Perconti, Andrea Petrucci, and Alberto Rosada. "Neutron Imaging by Boric Acid." Detection 01, no. 02 (2013): 30–35. http://dx.doi.org/10.4236/detection.2013.12005.
Full textWeng, Binbin, Jijun Qiu, Lihua Zhao, Caleb Chang, and Zhisheng Shi. "Theoretical D* Optimization of N+-p Pb<sub>1-x</sub>Sn<sub>x</sub>Se Long-Wavelength (8 - 11 μm) Photovoltaic Detector at 77 K." Detection 02, no. 01 (2014): 1–6. http://dx.doi.org/10.4236/detection.2014.21001.
Full textŻak, Dariusz, Jarosław Jureńczyk, and Janusz Kaniewski. "Zener Phenomena in InGaAs/InAlAs/InP Avalanche Photodiodes." Detection 02, no. 02 (2014): 10–15. http://dx.doi.org/10.4236/detection.2014.22003.
Full textWu, Jun, Hao Fu, and Xiashi Zhu. "Separation/Analysis Rhodamine B by Anion Surfactant/Ionic Liquid Aqueous Two-Phase Systems Coupled with Ultraviolet Spectrometry." Detection 02, no. 03 (2014): 17–25. http://dx.doi.org/10.4236/detection.2014.23004.
Full textSaleh, Tawfik A. "Detection: From Electrochemistry to Spectroscopy with Chromatographic Techniques, Recent Trends with Nanotechnology." Detection 02, no. 04 (2014): 27–32. http://dx.doi.org/10.4236/detection.2014.24005.
Full textDissertations / Theses on the topic "Detection"
Kapoor, Prince. "Shoulder Keypoint-Detection from Object Detection." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38015.
Full textLaxhammar, Rikard. "Conformal anomaly detection : Detecting abnormal trajectories in surveillance applications." Doctoral thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-8762.
Full textAlbrektsson, Fredrik. "Detecting Sockpuppets in Social Media with Plagiarism Detection Algorithms." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208553.
Full textAllteftersom nya former av propaganda och informationskontroll sprider sig över internet krävs också nya sätt att identifiera dessa. En allt mer populär metod för att sprida falsk information på mikrobloggar som Twitter är att göra det från till synes ordinära, men centralt kontrollerade och koordinerade användarkonton – på engelska kända som “sockpuppets”. I denna undersökning testar vi ett antal potentiella metoder för att identifiera dessa genom att applicera plagiatkontrollalgoritmer ämnade för text, och utvärderar deras prestanda mot denna sortens hot. Vi identifierar framför allt en typ av algoritm – den som nyttjar vektorrymdsmodellering av text – som speciellt användbar i detta avseende.
Le, Anhtuan. "Intrusion Detection System for detecting internal threats in 6LoWPAN." Thesis, Middlesex University, 2017. http://eprints.mdx.ac.uk/21958/.
Full textOlsson, Jonathan. "Detecting Faulty Piles of Wood using Anomaly Detection Techniques." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83061.
Full textPrevot, Yohan. "Arterial perfusion detection method by synchronous detection." [Tampa, Fla] : University of South Florida, 2005. http://purl.fcla.edu/usf/dc/et/SFE0001385.
Full textChau, Sam. "Investigation of silicon PIN-detector for laser pulse detection." Thesis, Linköping University, Department of Science and Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-325.
Full textThis report has been written at SAAB Bofors Dynamics (SBD) AB in Gothenburg at the department of optronic systems.
In military observation operations, a target to hit is chosen by illumination of a laser designator. From the targetpoint laser radiation is reflected on a detector that helps identify the target. The detector is a semiconductor PIN-type that has been investigated in a laboratory environment together with a specially designed laser source. The detector is a photodiode and using purchased components, circuits for both the photodiode and the laserdiode has been designed and fabricated. The bandwidth of the op-amp should be about 30 MHz, in the experiments a bandwidth of 42 MHz was used. Initially the feedback network, which consists of a 5.6 pF capacitor in parallel with a 1-kohm resistor determined the bandwidth. To avoid the op-amp saturate under strong illuminated laser radiation the feedback network will use a 56-pF capacitor and a 100-ohm resistor respectively.
The laser should be pulsed with 10-20 ns width, 10 Hz repetition frequency, about 800 nm wavelength and a maximum output power of 80 mW. To avoid electrical reflection signals at measurement equipment connections, the laser circuit includes a resistor of about 50 ohm, that together with the resistance in the laserdiode forms the right termination that eliminate the reflection signals. The wire-wound type of resistor shall be avoided in this application and instead a surface mounted type was beneficial with much lower inductance. The detector showed a linear behaviour up to 40-mW optical power. Further investigation was hindered by the breakdown of the laserdiodes. The function generator limits the tests to achieve 80 mW in light power. In different experiments the responsivity of the photodiode is different from the nominal value, however it would have required more time to investigate the causes.
Chang, Pi-Jung. "Double Chooz neutrino detector: neutron detection systematic errors and detector seasonal stability." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16861.
Full textDepartment of Physics
Glenn Horton-Smith
In March 2012, the Double Chooz reactor neutrino experiment published its most precise result so far: sin[superscript]2 2theta13 = 0.109 +/- 0.030(stat.) +/- 0.025(syst.). The statistical significance is 99.8% away from the no-oscillation hypothesis. The systematic uncertainties from background and detection efficiency are smaller than the first publication of the Double Chooz experiment. The neutron detection efficiency, one of the biggest contributions in detection systematic uncertainties, is a primary topic of this dissertation. The neutron detection efficiency is the product of three factors: the Gd-capture fraction, the efficiency of time difference between prompt and delayed signals, and the efficiency of energy containment. [superscript]252 Cf is used to determine the three factors in this study. The neutron detection efficiency from the [superscript]252 Cf result is confirmed by the electron antineutrino data and Monte Carlo simulations. The systematic uncertainty from the neutron detection efficiency is 0.91% used in the sin[superscript]2 2theta13 analysis. The seasonal variation in detector performance and the seasonal variations of the muon intensity are described in detail as well. The detector stability is confirmed by observation of two phenomena: 1) the [electron antineutrino] rate, which is seen to be uncorrelated with the liquid scintillator temperature, and 2) the daily muon rate, which has the expected correspondence with the effective atmospheric temperature. The correlation between the muon rate and effective atmospheric temperature is further analyzed in this thesis to determine the ratio of kaon to pion in the local atmosphere. An upper limit on instability of the neutron detection efficiency is established in the final chapter. The systematic error, 0.13%, from the relative instability is the deviation of the calibration runs. This thesis concludes with the potential systematic errors of neutron detection efficiency and estimation of how these potential systematic errors affect the result of sin[superscript]2 2theta13.
Wang, Jinghui. "Evaluation of GaN as a Radiation Detection Material." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343316898.
Full textFrascarelli, Antonio Ezio. "Object Detection." Thesis, Mälardalens högskola, Inbyggda system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-28259.
Full textBooks on the topic "Detection"
G, Greene Douglas, ed. Detection by Gaslight: 14 Victorian Detective Stories. Mineola, N.Y., USA: Dover Publications, 1997.
Find full textLee, Wenke, Cliff Wang, and David Dagon, eds. Botnet Detection. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68768-1.
Full textChugg, Keith M., Achilleas Anastasopoulos, and Xiaopeng Chen. Iterative Detection. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6.
Full textVerschuere, Bruno, Gershon Ben-Shakhar, and Ewout Meijer, eds. Memory Detection. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511975196.
Full textChristodorescu, Mihai, Somesh Jha, Douglas Maughan, Dawn Song, and Cliff Wang, eds. Malware Detection. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-44599-1.
Full textCapineri, Lorenzo, and Eyüp Kuntay Turmuş, eds. Explosives Detection. Dordrecht: Springer Netherlands, 2019. http://dx.doi.org/10.1007/978-94-024-1729-6.
Full textSengupta, Nandita, and Jaya Sil. Intrusion Detection. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2716-6.
Full textGaspar, Imre, ed. RNA Detection. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7213-5.
Full textLane, Brian. Crime & detection. New York: DK Pub., 2005.
Find full textHeyer, Georgette. Detection Unlimited. Bath: Chivers Press, 1993.
Find full textBook chapters on the topic "Detection"
Bzik, Thomas J. "Detecting the Detection Limit." In Detection Limits in Air Quality and Environmental Measurements, 1–15. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2019. http://dx.doi.org/10.1520/stp161820180117.
Full textAscari, Maurizio. "Detection before Detection." In A Counter-History of Crime Fiction, 17–40. London: Palgrave Macmillan UK, 2007. http://dx.doi.org/10.1057/9780230234536_2.
Full textChugg, Keith M., Achilleas Anastasopoulos, and Xiaopeng Chen. "Overview of Non-Iterative Detection." In Iterative Detection, 1–76. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_1.
Full textChugg, Keith M., Achilleas Anastasopoulos, and Xiaopeng Chen. "Principles of Iterative Detection." In Iterative Detection, 77–191. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_2.
Full textChugg, Keith M., Achilleas Anastasopoulos, and Xiaopeng Chen. "Iterative Detection for Complexity Reduction." In Iterative Detection, 193–238. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_3.
Full textChugg, Keith M., Achilleas Anastasopoulos, and Xiaopeng Chen. "Adaptive Iterative Detection." In Iterative Detection, 239–71. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_4.
Full textChugg, Keith M., Achilleas Anastasopoulos, and Xiaopeng Chen. "Applications in Two Dimensional Systems." In Iterative Detection, 273–313. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_5.
Full textBeerel, Peter A. "Implementation Issues: A Turbo Decoder Design Case Study." In Iterative Detection, 315–40. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_6.
Full textSengupta, Nandita, and Jaya Sil. "Introduction." In Intrusion Detection, 1–25. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2716-6_1.
Full textSengupta, Nandita, and Jaya Sil. "Discretization." In Intrusion Detection, 27–46. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2716-6_2.
Full textConference papers on the topic "Detection"
Ulyanov, N. A., S. V. Yaskevich, and P. A. Dergach. "DETECTION OF RECORDS OF WEAK LOCAL EARTHQUAKES USING MACHINE LEARNING." In All-Russian Youth Scientific Conference with the Participation of Foreign Scientists Trofimuk Readings - 2021. Novosibirsk State University, 2021. http://dx.doi.org/10.25205/978-5-4437-1251-2-76-78.
Full textGauch, Anja, and Richard Diurba. "Prototyping the Light Detection of the DUNE Near Detector." In Prototyping the Light Detection of the DUNE Near Detector. US DOE, 2023. http://dx.doi.org/10.2172/2283763.
Full textBeck, M., M. E. Anderson, and M. G. Raymer. "Imaging through Scattering Media Using Pulsed Homodyne Detection." In Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/aoipm.1994.ci.257.
Full textStrotov, V. V., and P. E. Zhgutov. "Combining Several Algorithmsto Increase the Accuracy of Pedestrian Detection and Localization." In 32nd International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/graphicon-2022-628-635.
Full textBedard, Alfred J. "The Infrasound Network (ISNet) as an 88D Adjunct Tornado Detection Tool: The Status of Infrasonic Tornado Detection." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10480.
Full textPacaldo, Joren Mundane, Chi Wee Tan, Wah Pheng Lee, Dustin Gerard Ancog, and Haroun Al Raschid Christopher Macalisang. "Utilizing Synthetically-Generated License Plate Automatic Detection and Recognition of Motor Vehicle Plates in Philippines." In International Conference on Digital Transformation and Applications (ICDXA 2021). Tunku Abdul Rahman University College, 2021. http://dx.doi.org/10.56453/icdxa.2021.1022.
Full textKhalid, Anna. "Kilonova Detection." In Kilonova Detection. US DOE, 2023. http://dx.doi.org/10.2172/1995266.
Full textMitrevski, Jovan. "Low Energy LArTPC Signal Detection Using Anomaly Detection." In Low Energy LArTPC Signal Detection Using Anomaly Detection. US DOE, 2023. http://dx.doi.org/10.2172/2204657.
Full textKolodziej, Joanna, Mateusz Krzyszton, and Pawel Szynkiewicz. "Anomaly Detection In TCP/IP Networks." In 37th ECMS International Conference on Modelling and Simulation. ECMS, 2023. http://dx.doi.org/10.7148/2023-0542.
Full textXu, Bin, Dongliang Yu, Jiayong Wu, Hongchao Wang, Dongjie Tan, and Likun Wang. "Research on Infrared Laser Leak Detection for Natural Gas Pipeline." In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90082.
Full textReports on the topic "Detection"
Broder, Bruce, and Stuart Schwartz. Quickest Detection Procedures and Transient Signal Detection. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada230068.
Full textBussiere, Matthew, Shawn Smith, and Stephane Bussiere. DTPH56-15-T-00004 Framework for Verifying and Validating External Leak Detection Systems on Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2015. http://dx.doi.org/10.55274/r0011847.
Full textNestleroth, Dr J. Bruce. PR-3-823-R01 Remote Field Eddy Current Detection of Stress-Corrosion Cracks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 1990. http://dx.doi.org/10.55274/r0011870.
Full textGuan, Yawen, Deborah Sulsky, J. Tucker, and Christian Sampson. Feature Detection. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769711.
Full textWendelberger, James G. Pit and Crack Detection Summary Report Crack Detection. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1504667.
Full textLukow, Steven, Ross Lee, Jonathan Gigax, and David Grow. Improving Non-Destructive Detection Technology Through SAVY Feature Detection. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1884728.
Full textVa'vra, Jaroslav. Single Electron Detection in Quadruple-GEM Detector with Pad Readout. Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/784889.
Full textBarnett, R. M., K. Einsweiler, and I. Hinchliffe. Higgs detection via decays to leptons with the SDC detector. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6053256.
Full textSiebenaler. PR-015-084510-R01 Evaluation of External Leak Detection Systems for Liquid Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2009. http://dx.doi.org/10.55274/r0010674.
Full textMelgaard, Seth, Nathaniel Kieber Grady, Nicolas Bikhazi, Aaron Joseph Pung, and Jeffrey A. Mercier. Microscale Transient Detection. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1494167.
Full text