Academic literature on the topic 'Design optimal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Design optimal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Design optimal"
Rabady, Rabi. "Optimal design of optical resonant filter." Optical Engineering 48, no. 5 (May 1, 2009): 054602. http://dx.doi.org/10.1117/1.3137162.
Full textFriedman, Avner, and Bryce McLeod. "Optimal design of an optical lens." Archive for Rational Mechanics and Analysis 99, no. 2 (June 1987): 147–64. http://dx.doi.org/10.1007/bf00275875.
Full textHåkansson, Andreas, and José Sánchez-Dehesa. "Optimal design of microscaled scattering optical elements." Applied Physics Letters 87, no. 19 (November 7, 2005): 193506. http://dx.doi.org/10.1063/1.2126134.
Full textLee, Sang woo, and Dae young Shin. "P-45 Optimal Design of Selection Valve by Design of Experiment." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2007.6 (2007): _P—45–1_—_P—45–6_. http://dx.doi.org/10.1299/jsmeatem.2007.6._p-45-1_.
Full textLovíšek, Ján. "Optimal design of laminated plate with obstacle." Applications of Mathematics 37, no. 5 (1992): 321–42. http://dx.doi.org/10.21136/am.1992.104514.
Full textBanks, H. T., and K. L. Rehm. "PARAMETER ESTIMATION IN DISTRIBUTED SYSTEMS: OPTIMAL DESIGN." Eurasian Journal of Mathematical and Computer Applications 2, no. 1 (2014): 70–80. http://dx.doi.org/10.32523/2306-3172-2014-2-1-70-80.
Full textPreethi, G., and Prince G. Arulraj. "Optimal Design of Axially Loaded RC Columns." Bonfring International Journal of Industrial Engineering and Management Science 6, no. 3 (June 30, 2016): 78–81. http://dx.doi.org/10.9756/bijiems.7345.
Full textGeorgiadis, George, and Balazs Szentes. "Optimal Monitoring Design." Econometrica 88, no. 5 (2020): 2075–107. http://dx.doi.org/10.3982/ecta16475.
Full textSmucker, Byran, Martin Krzywinski, and Naomi Altman. "Optimal experimental design." Nature Methods 15, no. 8 (July 31, 2018): 559–60. http://dx.doi.org/10.1038/s41592-018-0083-2.
Full textEmery, A. F., and Aleksey V. Nenarokomov. "Optimal experiment design." Measurement Science and Technology 9, no. 6 (June 1, 1998): 864–76. http://dx.doi.org/10.1088/0957-0233/9/6/003.
Full textDissertations / Theses on the topic "Design optimal"
Vettenburg, Tom. "Optimal design of hybrid optical digital imaging systems." Thesis, Heriot-Watt University, 2010. http://hdl.handle.net/10399/2438.
Full textSohrmann, Christoph, and Jens Eller. "Optimal Layer Design." Bachelor's thesis, Universitätsbibliothek Chemnitz, 2004. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200401468.
Full textDiese Bachelorarbeit befasst sich mit numerischen Untersuchungen zum optimalen Design von schützenden Mehrschichtbeschichtungen, die einer externen, Hertzschen Last ausgesetzt sind. Hinsichtlich der mechanischen Zuverlässigkeit und Haltbarkeit von Substrat und Beschichtung, versuchen wir die beste Zusammensetzung von gegebenen Materialien mit möglichst geringem Rechenaufwand zu finden. Die numerischen Berechungen wurden mit der Simulationssoftware ELASTICA durchgeführt, welches das erste kommerzielle, nicht-FEM-basierte Programm zur Berechnung von Stressfeldern innerhalb mehrfach beschichteter, elastischer Materialien darstellt. Dafür benutzten wir auf dem massiven Parrallelrechner CLiC (Chemnitzer Linux Cluster) unsere Windows basierte Anwendung unter der Emulationssoftware Wine. Das Ergebnis der Optimierung hängt im allgemeinen sehr stark von der Qualität der Eingangsparameter (z.B. Materialeigenschaften) ab, welche nicht immer in der erwünschten Genauigkeit vorliegen. Es wird gezeigt, dass die in dieser Arbeit vorgestellte Vorgehensweise sehr gute Resultate liefert und für reale Anwendungen einen äusserst ressourcenschonenden Lösungsweg darstellt
Aksoy, Bulent. "Optimal Channel Design." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1051796/index.pdf.
Full texts uniform flow formula is treated as a constraint for the optimization model.The cost function is arranged to include the cost of lining,cost of earthwork and the increment in the cost of earthwork with the depth below the ground surface.The optimum values of section variables are expressed as simple functions of unit cost terms.Unique values of optimum section variables are obtained for the case of minimum area or minimum wetted perimeter problems.
Liu, Ting. "Optimal design of transmultiplexers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0020/MQ47059.pdf.
Full textJarman, Ben. "Essays in optimal auction design." University of Sydney, 2008. http://hdl.handle.net/2123/4627.
Full textAuctions are an ancient economic institution. Since Vickrey (1961), the development of auction theory has lead to an extremely detailed description of the often desirable characteristics of these simple selling procedures, in the process explaining their enduring popularity. Given the pervasiveness of auctions, the question of how a seller should engineer the rules of these mechanisms to maximize her own profits is a central issue in the organization of markets. The seminal paper of Myerson (1981) shows that when facing buyers with Independent Private Values (IPVs) a standard auction with a specifically selected reserve price (or prices) is optimal, that is, maximizes a seller's expected profits among all conceivable selling mechanisms. In this model, it is assumed that the buyers have perfect information as to the existence of gains from trade. We shall argue that the consequences of this assumption for the design of the optimal auction are not well understood, which motivates our analysis. The three essays of this thesis relax the `known seller valuation' assumption by examining the optimal auction program when the seller (and principal) holds private information representing her reservation value for the good. In the first essay we provide an original technique for comparing ex ante expected profits across mechanisms for a seller facing N>1 potential buyers when all traders hold private information. Our technique addresses mechanisms that cannot be ranked point-by-point through their allocation rules using the Revenue Equivalence Theorem. We find conditions such that the seller's expected profits increase in the slope of each buyer's allocation probability function. This provides new intuition for the fact that a principal does not benefit from holding private information under risk neutrality. Monopoly pricing induces steep probability functions so the seller/principal benefits from announcing a fixed price, and implicitly her private information. An application is presented for the well known k double auction of the bilateral trade literature. In the second and third essays of this thesis, we extend the above framework to allow for informational externalities. Specifically, we allow for the situation in which the seller's private information represents a common value component in buyers' valuations. Thus the seller's private information (say regarding the quality of the good) is of interest to bidders independently of any strategic effects. In recent work Cai, Riley and Ye (2007) have demonstrated that a seller who holds private information about the quality of a good faces an extra consideration in designing an auction; the reserve price signals information to bidders. In a separating equilibrium signalling is costly in the sense that reserves are higher than would be optimal under complete information. We examine the returns to the seller in an English auction from using different types of secret reserve regimes. We find that immediate disclosure of a reserve is preferable to announcement after the auction in the form of a take-it-or-leave-it offer to the winning bidder. Sale occurs less often during the auction for a given reserve price strategy under secret reserve regimes, which increases the incentive for the seller to report more favourable information though the reserve price offer. Separating equilibria involving later announcement therefore generate even lower expected profits to the seller (signalling is more costly) than under immediate disclosure. In the third essay we compare the benchmark signalling equilibrium of immediate disclosure to a screening regime which we call the Right of Refusal. In this extreme form of a secret reserve the seller never announces the reserve price, she simply accepts or rejects the auction price. We find that the Right of Refusal dominates immediate disclosure if the seller's valuation is a sufficient statistic for the private information of interest. Thus a seller with market-relevant private preference information can benefit from not exercising monopoly price setting power. The result also provides conditions under which a competitive screening equilibrium is more efficient than a signalling mechanism. Broadly speaking, screening is better when the common value aspect in the preferences of the informed and uninformed parties are `aligned', and potential gains from trade to the uninformed party are significant. We believe this conclusion to be of particular interest to the design of privatization schemes.
Carlsson, Jesper. "Optimal Control of Partial Differential Equations in Optimal Design." Doctoral thesis, KTH, Numerisk Analys och Datalogi, NADA, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9293.
Full textDenna avhandling handlar om approximation av optimalt styrda partiella differentialekvationer för inversa problem inom optimal design. Viktiga exempel på sådana problem är optimal materialdesign och parameterskattning. Inom materialdesign är målet att konstruera ett material som uppfyller vissa optimalitetsvillkor, t.ex. att konstruera en så styv balk som möjligt under en given vikt, medan ett exempel på parameterskattning är att hitta den inre strukturen hos ett material genom att applicera ytkrafter och mäta de resulterande förskjutningarna. Problem inom optimal styrning, speciellt för styrning av partiella differentialekvationer,är ofta illa ställa och måste regulariseras för att kunna lösas numeriskt. Teorin för Hamilton-Jacobi-Bellmans ekvationer används här för att konstruera regulariseringar och ge feluppskattningar till problem inom optimaldesign. Den konstruerade Pontryaginmetoden är en enkel och generell metod där det första analytiska steget är att regularisera Hamiltonianen. I nästa steg löses det Hamiltonska systemet effektivt med Newtons metod och en gles Jacobian. Vi härleder även en feluppskattning för skillnaden mellan den exakta och den approximerade målfunktionen. Denna uppskattning beror endast på skillnaden mellan den sanna och den regulariserade, ändligt dimensionella, Hamiltonianen, båda utvärderade längst lösningsbanan och dessL²-projektion. Felet beror alltså ej på skillnaden mellan den exakta och denapproximativa lösningen till det Hamiltonska systemet. Ett annat fall som behandlas är frågan hur indata ska väljas för parameterskattningsproblem. För sådana problem är målet vanligen att bestämma en rumsligt beroende koefficient till en partiell differentialekvation, givet ofullständiga mätningar av lösningen. Här visas att valet av indata, som genererarde ofullständiga mätningarna, påverkar parameterskattningen, och att det är möjligt att formulera meningsfulla optimalitetsvillkor för indata som ökar kvaliteten på parameterskattningen. I avhandlingen presenteras lösningar för diverse tillämpningar inom optimal materialdesign och parameterskattning.
QC 20100712
Lou, Yunjiang. "Optimal design of parallel manipulators /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?ECED%202006%20LOU.
Full textHaywood, Sarah L. "Optimal design in language production." Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/24688.
Full textShu, Huang. "Optimal design of multirate systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq20771.pdf.
Full textBellur, Ramaswamy Ravi Shankar. "Optimal design of stiffened plates." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0017/MQ45871.pdf.
Full textBooks on the topic "Design optimal"
Kawohl, Bernhard, Olivier Pironneau, Luc Tartar, and Jean-Paul Zolésio. Optimal Shape Design. Edited by Arrigo Cellina and António Ornelas. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/bfb0106739.
Full textLevi, A. F. J., and Stephan Haas, eds. Optimal Device Design. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511691881.
Full textLevi, A. F. J. 1959- and Haas Stephan, eds. Optimal device design. New York: Cambridge University Press, 2010.
Find full textKotowitz, Yehuda. Optimal patent design. [Toronto, Ont.]: Law and Economics Programme, Faculty of Law, University of Toronto, 1987.
Find full textLevi, A. F. J. Optimal device design. Cambridge, UK: Cambridge University Press, 2010.
Find full textLópez-Fidalgo, Jesús. Optimal Experimental Design. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35918-7.
Full textDon, Slice, and Retana Alvaro CCIE, eds. Optimal routing design. Indianapolis, Ind: Cisco Press, 2005.
Find full textAloke, Dey, ed. Optimal crossover designs. New Jersey: World Scientific, 2009.
Find full textLiski, Erkki P., Nripes K. Mandal, Kirti R. Shah, and Bikas K. Sinha. Topics in Optimal Design. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0049-6.
Full textGoos, Peter, and Bradley Jones. Optimal Design of Experiments. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119974017.
Full textBook chapters on the topic "Design optimal"
Kulkarni, V. G. "Optimal Design." In Modeling, Analysis, Design, and Control of Stochastic Systems, 301–16. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4757-3098-2_9.
Full textHildebrandt, Stefan, and Anthony Tromba. "Optimal Design." In The Parsimonious Universe, 213–68. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-2424-2_7.
Full textLi, Mian. "Optimal Design." In Encyclopedia of Ocean Engineering, 1–10. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-6963-5_64-1.
Full textLi, Mian. "Optimal Design." In Encyclopedia of Ocean Engineering, 1269–78. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6946-8_64.
Full textDeng, Xingqiao. "Optimal Design." In Study on the Zero-Backlash Roller Enveloping Precision Reducer, 173–210. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5153-3_5.
Full textRyzhov, Ilya O. "Optimal Learning and Optimal Design." In Springer Series in Supply Chain Management, 49–76. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-01926-5_3.
Full textMistakidis, E. S., and G. E. Stavroulakis. "Optimal Design Problems." In Nonconvex Optimization and Its Applications, 159–73. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5829-3_5.
Full textSun, Ne-Zheng, and Alexander Sun. "Optimal Experimental Design." In Model Calibration and Parameter Estimation, 459–507. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2323-6_11.
Full textSawa, Masanori, Masatake Hirao, and Sanpei Kageyama. "Optimal Euclidean Design." In Euclidean Design Theory, 45–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8075-4_3.
Full textChu, Yunfei, and Juergen Hahn. "Optimal Experiment Design." In Encyclopedia of Systems Biology, 1572–73. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1284.
Full textConference papers on the topic "Design optimal"
Amra, C., C. Ndiaye, M. Zerrad, and F. Lemarchand. "Optimal design for field enhancement in optical coatings." In SPIE Optical Systems Design, edited by Michel Lequime, H. Angus Macleod, and Detlev Ristau. SPIE, 2011. http://dx.doi.org/10.1117/12.902317.
Full textZhao, Fu, Yanjue Gong, Li Zhang, Jianlong Lin, and Ping Wang. "Optimal Design for the Optical Switch." In 2009 Symposium on Photonics and Optoelectronics. IEEE eXpress Conference Publishing, 2009. http://dx.doi.org/10.1109/sopo.2009.5230060.
Full textKoshel, R. John. "Optimal simplex optimization for optical design." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Jose M. Sasian, R. John Koshel, Paul K. Manhart, and Richard C. Juergens. SPIE, 2004. http://dx.doi.org/10.1117/12.562916.
Full textJaumard, Brigitte, Yan Wang, and Nicolas Huin. "Optimal Design of Filterless Optical Networks." In 2018 20th International Conference on Transparent Optical Networks (ICTON). IEEE, 2018. http://dx.doi.org/10.1109/icton.2018.8473596.
Full textSavage, M., S. B. Lattime, J. A. Kimmel, and H. H. Coe. "Optimal Design of Compact Spur Gear Reductions." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0048.
Full textJia, Danping, Ting Jia, Lu Gao, and Yingwen Lin. "Optimal design of optical fiber fluorescent thermometry." In International Conference of Optical Instrument and Technology, edited by Yunlong Sheng, Yongtian Wang, and Lijiang Zeng. SPIE, 2008. http://dx.doi.org/10.1117/12.806808.
Full textLiu, Yong, and Avideh Zakhor. "Optimal binary image design for optical lithography." In Microlithography '90, 4-9 Mar, San Jose, edited by Victor Pol. SPIE, 1990. http://dx.doi.org/10.1117/12.20216.
Full textZarka, Joseph. "“Intelligent” Optimal Design." In ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/dac-14493.
Full textMusolino, Antonino, Marco Raugi, Rocco Rizzo, Luca Sani, and Mauro Tucci. "EMALS optimal design." In 2014 17th International Symposium on Electromagnetic Launch Technology (EML). IEEE, 2014. http://dx.doi.org/10.1109/eml.2014.6920685.
Full textVenkataraman, P. "Optimal airfoil design." In 14th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2371.
Full textReports on the topic "Design optimal"
Dobson, David C. Modeling and Optimal Design of Micro-Optical Structures. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada384752.
Full textLee, Michael Junho, Antoine Martin, and Robert M. Townsend. Optimal Design of Tokenized Markets. Federal Reserve Bank of New York, September 2024. http://dx.doi.org/10.59576/sr.1121.
Full textvon Winckel, Gregory John. Optimal Design and Control of Qubits. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475100.
Full textMorris, M. (Optimal design and analysis of experiments). Office of Scientific and Technical Information (OSTI), August 1988. http://dx.doi.org/10.2172/7091066.
Full textMitchell, T. (Optimal design and analysis of experiments). Office of Scientific and Technical Information (OSTI), August 1988. http://dx.doi.org/10.2172/6799504.
Full textBeiu, Andrea-Claudia, Roxana-Mariana Beiu, and Valeriu Beiu. Optimal design of linear consecutive systems. Peeref, March 2023. http://dx.doi.org/10.54985/peeref.2303p3503376.
Full textOzbek, Metin, Cy Yavuzturk, and George Pinder. Optimal Ground Source Heat Pump System Design. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1312959.
Full textRunolfsson, Thordur. Optimal Design of Uncertain Complex Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada586702.
Full textPal, Raktim, and Kumares Sinha. Optimal Design of Freeway Incident Response Systems. West Lafayette, IN: Purdue University, 2000. http://dx.doi.org/10.5703/1288284313283.
Full textMuthukrishnan, S. Computer aided optimal design of helical gears. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6075.
Full text